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a b s t r a c t

We explore the network topology of the federal funds market. This market is important
for distributing liquidity throughout the financial system and for the implementation of
monetary policy. The recent turmoil in global financialmarkets underscores its importance.
We find that the network is sparse, exhibits the small-world phenomenon, and is
disassortative. Centrality measures are useful predictors of the interest rate of a loan.
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1. Introduction

The recent turmoil in global financial markets underscores the continuing importance of the federal funds market. Its
smooth functioning is of utmost importance for distributing liquidity throughout the financial system and for the practical
implementation of monetary policy. Banks rely heavily on the federal funds market to offset liquidity shocks and manage
their reserve positions over the two-week reserve maintenance period. In formulating monetary policy, the Federal Open
Market Committee (FOMC) sets a target for the effective federal funds rate and directs the Federal Reserve Bank of New York
to ‘‘create conditions in reservemarkets’’ that will encourage federal funds to trade near the target. Creating such conditions
became a significant challenge beginning in August 2007. Massive amounts of liquidity were injected into the market on
several occasions. Nevertheless, the federal funds rate deviated from its target considerably more than usual both within
and across days.
In this paper, we take an in-depth look at the structure of the federal funds market from the vantage point of network

topology. Networks have proved useful in analyzing a wide array of structures and interactions across a multitude of fields.
In recent years, the physics community hasmade significant progress toward understanding the structure and functioning of
complex networks. The literature has focused on characterizing the structure of networked systems and how the properties
of the observed topologies relate to stability, resiliency, and efficiency in the case of perturbations anddisturbances. Recently,
economists have started to show renewed interest in networks.
We represent the federal funds market as a network, in which financial institutions are nodes and loans are directed

links, weighted by the value of the loans between the counterparties. Using a unique transaction-level data set spanning
1997–2006, we are able to analyze in unprecedented detail the characteristics of the overnight federal funds network and
its evolution over the past decade. We find that the value sent between banks has increased even though the number
of participants in the network has decreased. Like other complex networks, the federal funds network is sparse, exhibits
the small-world phenomenon, and is disassortative. The number of counterparties per bank (degree) follows a fat-tailed
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distribution, withmost banks having few counterparties and a small number havingmany. However, unlike other networks,
the degree distribution is not necessarily best represented by a power law distribution. Using network-specific measures,
we are able to shed new light on the small-bank–large-bank dichotomy of the federal funds market, whereby small banks
generally lend funds to larger banks. Finally, we provide preliminary evidence that centrality measures, which determine
the relative importance of banks in the network, are useful predictors of the interest charged between banks.
In Section 2, we begin with a quick overview of some of the institutional details of the federal funds market. In the

subsequent section we review the literature on the federal funds market and network theory. Section 4 describes the data
used in our study. Section 5 outlines some network terminology. Section 6 presents different ways to visualize the federal
funds network. Section 7 contains the analysis and results of the paper. Section 8 concludes.

2. Federal funds market

The federal funds market is the market for immediately available reserve balances at the Federal Reserve. Depository
institutions that maintain accounts at the Federal Reserve can borrow (buy) or lend (sell) reserve balances. Federal funds,
or fed funds, are unsecured loans, and the rate at which these transactions occur is called the fed funds rate. Most trades are
delivered on the same day, and the duration is typically overnight; but trades for longer terms (called term fed funds) also
take place. In this paper, we consider only overnight fed funds.
Depository institutions hold reserve balances at the Federal Reserve Banks to meet reserve requirements – a minimum

average balance over a two-week period – and to prevent any overnight overdrafts that may arise from their payment
activities with other depository institutions.2 The day-to-day flows of business to and from a bank are unlikely to leave it
with the desired level of reserves. The federal funds market is one option for adjusting the level of reserves. A bank with a
shortfall may buy federal funds. Like bank deposits, borrowed federal funds are bank liabilities. From a regulatory point of
view borrowed fed funds are treated differently and are not subject to reserve requirements.3
To buy and sell federal funds, depository institutions can either trade directly with each other or use the services of a

broker. Federal funds brokers do not take positions themselves but rather bring buyers and sellers together anonymously.
In the direct trading segment, transactions commonly consist of sales by small-to-medium-sized banks to larger banks and
often take place on a recurring basis. The rate is set in reference to the prevailing rate in the brokeredmarket. In the brokered
segment, participation is confinedmostly to larger banks acting on their own or a customer’s behalf. Trade sizes are generally
larger than in the direct trading segment [1].
Participants can settle federal funds trades in two ways: (1) they can use the Fedwire Funds Service to transfer reserves

from one depository institution’s account to another; or (2) they can use correspondent rebookings, in which (mostly
smaller) banks without accounts at the Federal Reserve may have their deposits at larger correspondents rebooked as
overnight loans to those correspondents. The rebooking segment does not involve wire transfers between accounts at the
Federal Reserve. The individual loans are typically smaller, and the interest rates tend to be one quarter of a percentage point
below the rates in the brokered market [2].
By facilitating the transfer of the most liquid funds among depository institutions, the fed funds market plays a major

role in the execution of monetary policy. In fact, the directive for implementation of US monetary policy from the FOMC to
the Federal Reserve Bank of New York states that the trading desk should ‘‘create conditions in reserve markets’’ that will
encourage fed funds to trade at a particular level. Using open market operations the desk can change the supply of reserve
balances and thus create upward or downward pressure on the fed funds rate.

3. Literature review

The importance of the federal fundsmarket has not escaped the notice of academic research. Ho and Saunders [3] develop
a model in which banks have a target reserve balance that they achieve through participation in the federal funds market.
Banks that are risk averse to having a deficient balance will have interest-rate–elastic-demand functions for purchasing
federal funds. Since large banks have more options for obtaining necessary reserves, they are less risk averse. Large banks
therefore end up as net borrowers, while small banks are net lenders in the federal funds market. Allen and Saunders [4]
provide a second explanation for the large-bank–small-bank dichotomy. Since federal funds loans are uncollateralized,
banks face a risk when lending. In addition, large banks may not be able to judge correctly the risk of lending to small,
rural banks. Because of this information asymmetry, small banks are either rationed out of the federal funds market or are
forced to pay higher interest rates. Allen et al. [5] empirically confirm these results. They find that banks with an asset size
greater than $2.5 billion (in 1989 dollars) aremore likely to be net borrowers in the federal fundsmarket and that banks that
are located away from the major banking centers are more likely to be net lenders than banks in New York, Chicago, or San
Francisco. In the collateralized repo market, banks’ size and location do not have the same constraining effects. Furfine [6]
uses transaction-level data to describe themarketmicrostructure of the federal fundsmarket by categorizing banks by asset

2 The Federal Reserve’s Regulation D requires banks operating in the United States to hold reserves, either in the form of balances in deposit accounts at
the Federal Reserve or as cash in their vaults, in a fixed proportion to some of their deposit liabilities.
3 Regulation D exempts from the definition of a ‘‘deposit’’, and hence from reserve requirements, bank liabilities arising from borrowings from other
banks, from various government agencies, and, under certain conditions, from securities dealers.
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size. His characterization of the market largely agrees with that of Ref. [5]. However, while smaller banks are usually net
lenders and larger banks are net borrowers, most banks are active on both sides of the market. We add to this literature by
examining how the size and position of a bank in the federal funds market affect their borrowing and lending interest rates.
Hamilton [7] shows that the effective daily federal funds rate does not follow a martingale. Rates are lower on Fridays

and generally decrease throughout the first seven days of the reserve maintenance period. Demiralp et al. [2] use a data
set similar to the one used in Ref. [6] to look for possible calendar effects on the interest rate charged on federal funds
loans. They find that interest rate volatility increases during the last three days of the maintenance period. They confirm
Hamilton’s observation of lower than average interest rates on Friday, but find no evidence of decreasing interest rates
during the first seven days of the maintenance period. Bartolini et al. [8] use a data set of brokered transactions to study the
intraday behavior of the federal funds market. While average interest rates are only slightly lower in the late afternoon, the
volatility of interest rates is much higher in this period.
Complex networks drawn from vastly different real-world settings tend to exhibit a number of universal properties (see

Ref. [9,10]). First, the probability that a node in the network is connected to x other nodes follows a power law distribution:
P(x) v x−γ with 2 . γ . 3. This implies that, while most nodes have only few connections, ‘‘highly connected hubs’’ can
exist. Networks that exhibit this property are called scale-free. Second, the probability that the two nearest neighbors of a
node are connected (known as clustering) is higher than what would be found in a network in which nodes are connected
at random. Third, many networks exhibit the small-world property, which implies that any node can be reached from any
other node in only a few steps. Fourth, certain networks, social networks, for example, tend to be assortative in that nodes
tend to connect with nodes of similar degree while other networks, such as technological and biological networks, tend to
be disassortative.
Albert et al. [11] show that the distribution of the number of counterparties of a financial market participant has

important consequences for the resiliency of the network. Networks in which the number of counterparties of a participant
follows a power law distribution are robust to the removal of randomnodes from the network. If nodeswhich are connected
to many other participants are removed, however, the structure of the network can change dramatically. The structure of
the network affects the degree to which financial crises spread throughout the market. Sparse networks are more likely to
experience financial contagion [12]. Gale and Kariv [13] set up an experiment in which participants bid for an asset. The
price of the asset is affected by the structure of the network. As the network becomesmore sparse and intermediation in the
network increases, the efficiency gains from trade decreases. Because actual data on transactions in the federal fundsmarket
reflect the costs of maintaining interbank relationships, observed transactions are a good proxy for potential transactions.
This fact, combined with the results of Ref. [13], has implications for our paper, as the federal funds market is far from
complete and there is some intermediation.
Our paper closely follows the analysis of Soramaki et al. [14]. The authors use statistics developed in network theory

to describe Fedwire, a large-value interbank payment system operated by the Federal Reserve. The network of interbank
payments consists of a core of highly connected banks with a great majority of the banks having few counterparties on a
particular day. The distribution of the number of counterparties for each bank roughly follows the power law distribution.
Other countries’ interbankmoneymarkets have been analyzed in recentworks that are similar to Ref. [14]. Boss et al. [15]

use data on bank liabilities in the Austrian interbank network. The authors characterize the degree distribution and compute
the network clustering coefficient and average path length. Their results are broadly similar to ours. Iori et al. [16] study
the Italian interbank money market, focusing on the evolution of the network over the month-long reserve maintenance
period. The network becomesmore dense in the final days of the reservemaintenance period. Similar to our paper, Iori et al.
find that the network consists of many small creditor banks and a few large borrowing banks. Wetherilt et al. [17] analyze
the UK money market. Unlike Refs. [15,16] and our paper, Ref. [17] includes data from the 2007–2008 financial crisis. The
aggregate amount lent by banks increased significantly during the first stages of the financial crisis. Finally, Refs. [18,19]
provide additional analysis for the Brazilian and Danish money markets, respectively.
We find that, in the federal fundsmarket, as in othermarkets, participants’ physical locationmatters. Portes and Rey [20]

use a gravity model – a model in which asset flows between two countries are positively related to the size of the countries
and inversely related to the distance between them – to find determinants for equity flows among 14 countries. The authors
find that distance is, indeed, inversely related to the size of equity flows between two countries. Furthermore, Portes and Rey
show that including variables that proxy for information frictions between two countries decreases the effect of distance
on cross-border flows. Similar to Ref. [20], Rosati and Secola [21] study cross-border payment flows in two large-value
payment systems in the European Union. They find that the payment flows between two countries increase significantly if
the two countries share a border or a common language and decrease significantly as the distance between the two countries
increases.

4. Data

We construct our networks from the transaction journal of the Fedwire Funds Service.4 The Fedwire Funds Service
provides a real-time gross settlement system in which more than 7000 participants initiate funds transfers, which are

4 The Federal Reserve also operates the Fedwire Securities Service, which is the depository for US Treasury and US government agency securities
(including mortgage-backed securities), as well as securities issued by certain international organizations such as the World Bank.
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immediate, final, and irrevocable when processed. Participants that maintain a reserve or clearing account with a Federal
Reserve Bank may use Fedwire to send payments to, or receive payments from, other account holders directly. Participants
use Fedwire to handle large-value, time-critical payments, such as those for the purchase, sale, and financing of securities
transactions; the disbursement or repayment of loans; and the settlement of real estate transactions. In addition, participants
use Fedwire for the settlement of interbank purchases and sales of federal funds. As such, federal funds loans are a subset
of Fedwire transactions. We shall refer to the complement of the federal funds-related Fedwire transactions as Fedwire
payments.
We identify federal funds loans from the transaction journal using the method pioneered by Furfine in Ref. [6]. The basic

idea is as follows. A pair of transactions between two depository institutions on consecutive business days is identified as a
federal funds loan if the amount transferred on the first day is reversed on the next business day with a plausible amount
of interest. Each loan identified provides information on the identity of the lender (seller), the identity of the borrower
(purchaser), the amount, the time of delivery, the time of return, and the interest paid. For a more detailed description of
the data, see Appendix B. As noted in Ref. [6] there are several caveats to keep in mind when analyzing the data. First, our
algorithm seeks to only identify overnight loans, not term loans.5 Second, the time of delivery is the timemoney wasmoved
across accounts at the Federal Reserve, not the time at which the trade was agreed upon. Third, the method might identify
other overnight loan arrangements that are not necessarily federal funds, Eurodollars or tri-party repos, for example. In fact,
more than half of the transactions in our data set could be Eurodollar deposits. Inmanyways, Eurodollar deposits and federal
funds loans are part of an integrated money market. For example, Ref. [23] have shown that the spread between overnight
Eurodollar deposits and overnight fed funds loans is less than half a basis point. For ease of exposition, we will abuse the
terminology and refer to the overnight money-market loans in our data set as federal funds loans. Fourth, although we
have the identities of sending and receiving banks on each side of the transaction, these may not be the same as the actual
borrower and lender. A bank could be conducting an overnight transaction on behalf of a correspondent bank or a non-
financial institution. Fifth, correspondent rebookings are not included in this data set.

4.1. Federal funds loans in 2006

Our sample consists of a total of 6889,674 federal funds loans for the 2454 business days between April 1, 1997 and
December 29, 2006. During 2006, an average of 2607 ± 135 (standard deviation across days) loans worth $338 ± 26
billion were identified per day. The peak day of 2006 involved 2964 loans worth $421 billion. Federal funds loans come
in many sizes, with the most common being $100 million, $50 million, $25 million and $200 million. In 2006, the largest
loan identifiedwas $5 billion (see top left panel of Fig. 1). The distribution of loan sizes is skewed to the right,with themedian
loan being $50± $1million compared to the average loan of $130± $7million. In comparison, the average transaction over
Fedwire is $5 million, and the median is $36,000.
The interest rates charged on the loanswere centered narrowly around the federal funds target rate, with a daily standard

deviation of 6.7± 5.0 basis points (see top right panel of Fig. 1). Only a small percentage of loans (0.2%, value weighted) had
an interest rate that was more than 50 basis points from the federal funds target rate.
The intraday distributions of federal funds deliveries and returns are both unimodal and heavily concentrated in the

late afternoon.6 Almost two-thirds of all federal funds deliveries occur after 4:30 P.M. eastern time whereas 50% of returns
do. This is in contrast to the bimodal intraday patterns in federal funds trading activity found by Bartolini et al. [24] using
data from a fed funds broker. The first peak in trading activity occurs in the morning between 8:30 A.M. and 10:00 A.M.
and the second peak, at even higher levels, late in the afternoon. The analysis shows that 40% of total value traded is
settled in the last two hours. Many of the loans that are arranged in the morning are thus settled over Fedwire in the late
afternoon.
Federal funds are generally considered ‘‘24-hourmoney’’, even though amarket for early-return federal funds does exist.

In our data, 14% of returns occur before noon and the interest paid on these early-return loans is usually several basis
points lower than for loans returned in the afternoon. In 2006, the average (value-weighted) time of delivery was 4:30
P.M.± 0:07 min while the average time of return was 3:09 P.M.± 0:09 min—implying an average duration of the loans of
22 h and 39 min (see bottom two panels of Fig. 1).

4.2. Federal funds loans since 1997

The overall market turnover has increased by 70% in real terms from around $200 billion in 1998 to $340 billion in
2006.7 The share of Fedwire transactions being identified as federal funds loans in terms of value, however, has been

5 Maturities in the ‘‘term’’ federal funds market range from a few days to more than a year, althoughmost transactions mature in six months or less. The
amount of term federal funds outstanding is probably on the order of one-tenth of the amount of overnight loans arranged on any given day [22].
6 The Fedwire Funds Service business day begins at 9:00 P.M. eastern time on the preceding calendar day and ends at 6:30 P.M. On December 8, 1997 the
Fedwire Funds Service opening time was moved from 07:00 A.M to 00:30 A.M. The current opening time was implemented on May 17, 2004. The closing
time has remained unchanged.
7 In this paper, all dollar figures are stated in 2007 dollars or in nominal figures.
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Fig. 1. Distribution of size, interest rate, time of settlement and time of return for federal funds loans in 2006.

Fig. 2. Top left: Total daily value of federal funds loans. Top right: Number of federal funds loans per day. Bottom left: Ratio of value of federal funds
deliveries to total activity settled over Fedwire. Bottom right: Average size of federal funds loans. Except for the bottom left panel of this figure, all time
series graphs in this paper are displayed as four-week moving averages.

fairly constant at 15% (see Fig. 2). The number of loans per day has decreased by 23% from around 3300 in 1998 to 2600
in 2006, while the average loan size has doubled from $60 million to $120 million (see Fig. 3). Moreover, loans tend
to settle later in the afternoon and have less daily variation in their interest rates. Both the average time of delivery
and return have moved approximately half an hour later (see Fig. 3). Before 2002, the standard deviation of the interest
rates charged on a day was 13.8 ± 5.8 basis points, whereas in 2006 the standard deviation was 6.7 ± 5.0 basis points.
Note, though, that interest rate variation was considerably larger after the end of the sample period, during the financial
crisis.
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Fig. 3. Top left: Median and average loan size. Top right: Mean time of delivery and time of return. Bottom left: 5th, 50th and 95th percentile of difference
between the interest rate on fed funds loans and the target interest rate. Bottom right: Coefficient of Variation of the interest rate.

5. Federal funds networks

A network is a collection of nodes joined in pairs by directed links. Links can have weights attached, measuring the
strength of the relationship between nodes. Mathematically, a weighted directed network, N , is defined by a set V(N) of
n nodes (vertices), a set of E(N) of m links (edges), and a mapping ω : E(N) 7−→ R. Each node is identified by an integer
value i = 1, . . . , n; the links are identified by a pair (i, j) that represents a connection going from node i to node j to which
a weightω(i, j) is attached. In principle, self-connections (i.e., links from node i to node i) or multiple links (i.e., two or more
separate links from node i to node j) can exist. If multiple links do not exist, a directed, weighted network can be completely
represented in terms of a weight matrixW , where each elementWij = ω(i, j)is the weight on the link from node i to node j.
At times it can be useful to consider an unweighted version of a network. A convenient way of representing an unweighted
network is by using an adjacency matrix, a n× nmatrix denoted by A such that

aij =
{
1 if |wij| > threshold
0 Otherwise (1)

where the threshold often is set to zero. The set Pi = {j : (j, i) ∈ E(N)} is the set of predecessors of node i and
Si = {j : (i, j) ∈ E(N)} is the set of successors of node i. The union of the predecessors and successors is the set of neighbors
of node i,Ni = Pi ∪ Si.
The set of federal funds loans can be used to form networks in a multitude of ways depending on the definitions of what

constitute nodes, links, and weights. For most of the analysis, we take the set of nodes to be the institutions that either sent
or received federal funds on a particular day. If two banks are counterparties to a loan, then there is a directed link from the
lender to the borrower, weighted by the dollar amount of the loan. In the case of multiple loans between two institutions,
theweight of the link is the sumof the value of all the loans. Consequently, we have an ensemble of networks across business
days.
We also consider an interdistrict network. There are twelve nodes in this network, one for each Federal Reserve district.

Directed links represent the total daily value that flows between and within the Federal Reserve districts. Finally, we look
at how the interbank network varies throughout the day. For each day in 2006, we break up the business day into half-hour
intervals.

6. Visualizing the federal funds network

The federal funds loan network for September 29, 2006 – the last business day of the third quarter – is illustrated in
Fig. 4. A total of 479 banks were active in the market on that day. The largest bank – in total value of federal funds bought
and sold – is located at the center of the graph. The first circle consists of the 165 banks with which the bank in the center
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Fig. 4. Federal funds network for September 29, 2006. Largest participant – in terms of value – is in the center. Large-value links are in blue; small-value
links are in red.

did business. The second circle consists of the 271 banks that the banks of the first circle did business with. The banks in the
second circle had no activity with the bank in the center. The remaining circles represent the 42 banks that were more than
two links away from the center. Moreover, two banks did business among themselves but with no other. Large-value links
are in blue; small-value links are in red.

6.1. The interdistrict network

Complex networks are generally abstract constructs in which the position of the nodes has no particular meaning. In
many ways, this is also the case for the federal funds market. Trading takes place on a screen-based system or over the
phone, and settlement occurs electronically through Fedwire. The participants, however, are physically located all over the
United States and maintain an account with their local Federal Reserve Bank.
The literature on the federal funds market often mentions the presence of a tiered structure, in which smaller banks will

lend to regional banks that lend to money-center banks in New York and, to a lesser extent, Chicago. As Stigumwrites, ‘‘The
federal funds market resembles a river with tributaries: money is collected in many places and then flows through various
channels into the New York market. In essence, the nation’s smaller banks are the suppliers of fed funds, and the larger
banks are the buyers’’ [1].
We construct a Federal Reserve district network by assigning each bank to the district where it resides and then

calculating the flows between and within districts. The size of the nodes in Fig. 5 corresponds to the total value of loans
lent or borrowed by banks in that district, and the width of the links corresponds to the value lent and borrowed between
districts. Almost a quarter of the participants in the federal funds market were located in the New York district, and 79% of
the value involved at least one bank based in this district. The San Francisco, Chicago, and Atlanta districts were the next
largest districts in number of participants, while Boston was the second largest in value. Each district shares a link with a
majority of the other districts.
In the spirit of Ref. [20], we run the following regression on data from 2006 to test if distance affects the value sent

between counterparties.

Log(vij) = θi + θj + θ1Log(vi·)+ θ2Log(v·j)+ θ31(i = j)+ θ41(i neighbors j)+ εij. (2)

In this regression, vij is equal to the value sent from banks in district i to banks in district j. The value sent by district i is
given by vi· =

∑
j vij and the value borrowed by district j is given by v·j =

∑
i vij. The indicator variable 1 (i neighbors j) is

equal to 1 if district i and district j share a border, and 0 otherwise. We include district fixed effects to control for any.
As expected, the estimated values of θ3 and θ4 are positive and significant. The value sent between two districts that

border each other is nearly 65% higher than the value sent between districts that do not share a border. The estimated value
of θ3 implies that flows within a district are approximately 170% higher than flows between two non-neighboring districts.
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Fig. 5. Federal funds Reserve District network on September 29, 2006. The width of each link is proportional to interdistrict activity. The width of each
node is proportional to total district activity.

Fig. 6. Intraday networks for September 29, 2006. Each network represents the activity in one half-hour period. The center of each network is the same
as in Fig. 4. Large-value links are in blue; small-value links are in red.

6.2. Intraday network

As shown in Fig. 1, the settlement activity of federal funds loans is very high during the latter part of the afternoon.
This timing is driven both by trades conducted in the late afternoon and by the settlement of trades booked earlier in the
day. Another way of illustrating this phenomenon is to create a network for each half hour of the day. Before 3:00 P.M., the
network is relatively sparse, but the tiered structure is evident in the first panels of Fig. 6. A burst of activity occurs over the
next three hours until the close for third party transfers (i.e. transfers on the behalf of the bank’s customers) at 6:00 P.M.
Some residual activity occurs over the last half hour before the close of Fedwire.

7. Topological characteristics

We now turn to a detailed analysis of the topological features of the federal funds network. Our modus operandi is first
to define the topological measures and then to present the results. For the results, we first focus on the statistics for 2006
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and then turn to describing the trends observed since 1997. For the ease of exposition, we shall refer to market participants
as banks even though institutions such as thrifts and government-sponsored enterprises are also important players in the
federal funds market.8

7.1. Size, connectivity, and reciprocity

Definition: The most basic properties of a network are the number of nodes, n, and the number of links,m. The number of
nodes defines the size of a network while the number of links relative to the number of possible links, given the number of
nodes, is a measure of the degree of completeness of a network. The degree of completeness for a directed network is given
by

α =

∑
ij
aij

n(n− 1)
=

m
n(n− 1)

(3)

and ranges from zero for a set of nodeswith no links to 1 for a complete network. For a directed network, it is often important
to know if its links are reciprocal, that is, if node i is linked to node j, is node j also linked to node i? The standard way to
measure reciprocity is by the fraction of links for which there is a link in the opposite direction, that is,

% =

∑
ij
aijaji

m
. (4)

However, a potential problem with this measure is that it does not take into account that networks with a higher degree
of completeness will tend to have a higher number of reciprocal links due exclusively to random factors (see Ref. [25]). An
alternative measure is the correlation coefficient of the adjacency matrix from Eq. (1)

ρ =

∑
ij

(
aij − α

)
(aji − α)∑

ij

(
aij − α

)2 =
% − α

1− α
. (5)

Values of ρ greater than zero imply larger reciprocity than a randomnetwork (with the same degree of completeness), while
values below zero imply smaller reciprocity than a random network. The former case is referred to as a reciprocal network
and the latter as an anti-reciprocal network. A weighted version of the standard reciprocity measure can be computed as

%̃ =

∑
ij
aijajiwij∑
ij
wij

(6)

and the correlation coefficient forW , ρ̃, is obtained by substitutingwij for aij in the first part of Eq. (5).
Discussion: In 2006, the average size of the federal funds network on any given day was 470 ± 15 nodes. A total of 986

different banks were present in the market on at least one day during 2006, and 157 banks were present on all days. The
largest network, consisting of 511 banks, occurred on September 1, 2006. A directed network with 470 nodes implies more
than220,000possible links. Only a total of 8660different links, however,were identified over the course of 2006. The average
number of links was 1543± 72 links per day with a mere 41 links present on all days. In other words, the fed funds network
is extremely sparse with a degree of completeness averaging only 0.70%± 0.03% (see Table 5). In this respect, the fed funds
network is similar to the network of Fedwire payments studied in Ref. [14], which also had a degree of completeness of less
than 1%.
In reciprocity, however, the two networks are vastly different. The %-reciprocity of the federal funds network averaged

6.5% ± 0.8%, which is significantly lower than the reciprocity of the network of Fedwire payments. That lower reciprocity
reflects the fact that banks are much more likely to send each other payments than to grant each other overnight loans on
a given day. Moreover, the fed funds network is slightly more reciprocal than a random network with a ρ-reciprocity of
5.8% ± 0.8%. The weighted reciprocity measures are 43% ± 3.2% and 7.0% ± 1.7% for %̃ and ρ̃, respectively (see Table 5).
Hence, larger-value links are more likely to have a link in the opposite direction, everything else being equal.
The federal funds network has shown a steady downward trend in the number of both nodes and links from 1997 to

2006. The average number of participants per day has dropped by more than a quarter from 650 to 470 while the number
of directed links per day has dropped by 30% from 2200 to fewer than 1600. The degree of completeness has increased
marginally from 0.5% to 0.7% (see Fig. 7).
An intriguing empirical finding is that reciprocity has been tracking (or perhaps has even been leading) the level of the

federal funds rate over most of the period, as illustrated in Fig. 8. The economic significance (if any) of this observation is
not well understood and is a topic for future research. The relationship breaks down for the weighted reciprocity measures.

8 As of September 30, 2007, the Federal Home Loan Bank System had sold almost $100 billion of (overnight and term) federal funds, according to its
consolidated balance sheet.
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Fig. 7. Top left: number of nodes per day in eachnetwork. Top right: number of links per day. Bottom left: degree of completeness. Bottom right: reciprocity.
Values for the weighted reciprocity measures are plotted along the right axis, while values for the unweighted measures are given on the left axis.

Fig. 8. Reciprocity, target federal funds rate, interest rate on the 2 year treasury note and implied 6-month federal funds futures, for April 1, 1997 to July
31, 2007.

7.2. Components

In an analysis of the microstructure of markets, it is often useful to categorize participants to gather further insights.
Furfine [6] groups institutions by asset size.9 Network topology can also be used to define categories. Here, we employ
a methodology proposed in Ref. [26], where nodes are categorized according to how they connect with other nodes. The
categorization provides a useful decomposition of the market into a core that intermediates funds and components that
primarily supply or demand funds. We correlate the network categorization with attributes such as assets and geographical
location.

9 Banks with assets of less than $250 million are grouped together. The other groupings are $250 million–$1 billion, $1 billion–$10 billion, $10
billion–$100 billion, and greater than $100 billion.
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Fig. 9. Federal funds network for September 29, 2006. GWCC= giantweakly connected component, DC= disconnected component, GSCC= giant strongly
connected component, GIN= giant in-component, GOUT= giant out-component. On this day there were 57 nodes in the GSCC, 303 nodes in the GIN, 67
nodes in GOUT, 50 nodes in the tendrils and 2 nodes in a disconnected component.

Definition: The nodes of a network can be partitioned into a collection of disjoint sets called disconnected components,
V(N) = ∪h Vh(N). The nodes within each disconnected component do not have links to or from nodes in any other
component, that is, {(i, j), (j, i) : i ∈ Vh(N) ∧ j ∈ Vh′(N)} = ∅ if h 6= h′. The component with the largest number of
nodes is referred to as the giant weakly connected component (GWCC). In other words, the GWCC is the largest component of
the network in which all nodes connect to each other via undirected paths. The remaining disconnected components (DCs)
are smaller components for which the same is true. In empirical studies, the GWCC is often found to be several orders of
magnitude larger than any of the DCs [27].
The GWCC consists of a giant strongly connected component (GSCC), a giant out-component (GOUT), a giant in-component

(GIN), and tendrils (see Fig. 9). The GSCC comprises all nodes that can reach every other node in the GSCC through a directed
path. A node is in the GOUT if it has a path from the GSCC but not to the GSCC. In contrast, a node is in the GIN if it has a path
to the GSCC but not from it. A node is in a tendril if it does not reside on a directed path to or from the GSCC.10
Discussion: In the network of payments sent over Fedwire analyzed by Soramaki et al. [14], the GSCC is the largest

component. On average, almost 80% of the nodes in that network belong to the GSCC. In contrast, the GSCC was much
smaller for the federal funds network. In 2006, only 10% ± 1% of the nodes belonged to this component. By far the largest
component was the GIN. In 2006, 58% ± 5% of the nodes were in this component. The GOUT contained 17% ± 4% of all
nodes per day, while there were 14%± 3% of the nodes located in the tendrils.11 Less than 2%± 1% of the nodes were in the
remaining disconnected components (see Table 5).
The GSCC can be thought of as the core of the market; funds flow among all the banks in that component. Nodes in the

GINwere net senders of federal funds, while nodes in the GOUTwere net receivers. In 2006, only 1.2% nodes in the GOUT had
a higher value of sends than receipts and 99.2% of the GIN nodes sent more than they received. In other words, banks in the
GIN are supplying funds to the core of the market whereas banks in the GOUT are demanding funds from the core. As nodes
in the GIN make up nearly 60% of the nodes in the federal funds network, a majority of banks are net providers of funds to
the market. The reserves from these banks are passed on to a small number of banks in the core of the market, which then
distribute these funds among themselves and to those banks that demand funds.
Banks in the New York district were overrepresented in the GSCC. In 2006, 49% of the banks in the GSCC were from the

New York district. No other district accounted for more than 10%. The nodes in the St. Louis, Minneapolis, Kansas City and
Dallas districts tended to be in the GIN whereas the share of banks in the GOUT was larger than average in the Chicago
district and the Cleveland district (see Fig. 11). The nodes in the tendrils are interesting in that they do not receive (supply)
their federal funds from (to) the core. Nodes from the San Francisco district are overrepresented in the tendrils.
The relative sizes of the components have been fairly constant throughout the period, even though tendrils have become

slightly more prominent at the expense of the GSCC (see Fig. 10).

10 The tendrils may also be differentiated into three subcomponents: a set of nodes on a path emanating from GIN, a set of nodes on a path leading to
GOUT, and a set of nodes on a path that begins in GIN and ends in GOUT.
11 7.2% of nodes were in ‘‘from GIN’’ tendrils, 4.8% of nodes were in the ‘‘to GOUT’’ tendrils and 2.3% of nodes were in ‘‘tubes’’ from GIN to GOUT.
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Fig. 10. Percentage of nodes in each component, from April 1, 1997 to December 31, 2006.

Fig. 11. Average number of nodes in each district and each component for each day in 2006.

Banks in the GSCC were approximately 20 times larger, in assets, than banks in other components. In 2006, the average
bank in the GSCC had an asset size of $359 billion. For the GIN, GOUT, tendril, and DC, these averages were $10.0 billion,
$39.6 billion, $8.7 billion, and $2.1 billion, respectively.
Membership of a node in a particular component is persistent across time. The probability that a node will be in

component Ct on a particular day, given that the node was in component Ct−1 on the previous business day, is shown
in Table 1. The probability that a node will belong to the same component that it belonged to on the previous business day
was high, especially for the GIN. Conversely, the probability of transition from GOUT to GIN or from GIN to GOUT was very
low. If a bank was on the sending or receiving side of the market, then it is rather unlikely that the bank was on the opposite
side of themarket on the following day.While banks in the center of the federal fundsmarket were very likely to participate
in the federal funds market on the following business day, banks at the periphery of the market were much less likely either
to lend or to borrow on the next day.

7.3. Degree distribution

The number of counterparties is a key characteristic in assessing the importance of different market participants. In the
federal funds market, the number of counterparties a bank lends to and the number of counterparties it borrows from are
of particular interest. In the network literature, the number of connections of a node is known as its degree. In the case of a
directed network, there are two kinds of degree: out-degree and in-degree.
Definition: The in-degree of a node is the number of its predecessors, kini = |Pi| =

∑
j aji. The out-degree of a node is the

number of its successors, kouti = |Si| =
∑
j aij. For any network, the average in-degree is equal to the average out-degree
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Table 1
Probability transitionmatrix. Entries of the matrix give the probability of moving between components on consecutive business days. Only data from 2006
were used for this table.

Ct−1 \ Ct GSCC GIN GOUT Tendril DC i 6∈ V(N) Total

GSCC 76 10 11 1 0 1 100
GIN 2 83 1 5 0 9 100
GOUT 7 4 68 9 0 12 100
Tendril 1 20 10 57 1 12 100
DC 0 15 3 5 46 32 100
i 6∈ V(N) 0 5 2 2 0 91 100

Table 2
Average in-degree, average out-degree, maximum in-degree and maximum out-degree for each component. Each entry gives the average value across all
networks in 2006.

GSCC GIN GOUT Tendril DC

〈kini 〉 19.1 0.2 5.9 2.0 0.7
〈kouti 〉 9.3 3.8 0.2 0.7 0.7
max kini 127.6 11.3 38.2 13.7 4.3
max kouti 48.8 29.0 6.5 6.6 1.1

Fig. 12. Complement of the CDF of out-degree and in-degree for September 29, 2006.

and also equal to the number of links divided by the number of nodes, that is, 〈kouti 〉 =
1
n

∑
kouti = 〈k

in
i 〉 =

1
n

∑
kini =

m
n .

The distribution of degrees across nodes is a basic characteristic of networks and is often used in comparative analysis of
networks. The random network model of Ref. [28] is a popular benchmark.12 For this type of network the distribution of
node degree follows a Poisson distribution. Many other networks, including several networks representing activity over
large-value payments systems – such as Fedwire [14] and the Japanese interbank payment system BOJ-NET [29] – follow a
power law distribution in the tail, P(x) v x−γ for x > a.
Discussion: On average, banks lent to (or borrowed from) 3.3 ± 0.1 other banks in 2006. The average number of

counterparties per bank increased slightly from 1999 to 2003 but has fallen back to its 1997 level. The average number
does not reflect the substantial heterogeneity across nodes and components. The maximum in-degree was 127.6 ± 16.3,
while themaximum out-degree in the network was 48.8± 6.4. Thus, a large number of banks lent to or borrowed from only
a few counterparties, and a small number of banks have many counterparties.
The disparity between the maximum in-degree and maximum out-degree in the federal funds network points to the

asymmetry present in the federal funds market. There are many more banks that lend to a few institutions, but do not
borrow, than there are banks that borrow from a few institutions, but do not lend. As a result, the banks with many
counterparties are able to borrow from more institutions than they are able to lend to.
In the GSCC, the average in- and out-degrees were 19± 2 and 9± 1, respectively. For the GIN, the average in-degree was

0.2 and the average out-degree was 4. In the case of the GOUT, the average in-degree was 6 and the average out-degree was
0.2 (see Table 2).
Fig. 12 displays the distributions of in-degree and out-degree for a representative day in our sample period. Specifically,

the graphs have in-(out-)degree on the horizontal axis and the complement of the cumulative distribution function (CCDF)
on the vertical axis, 1 − F(x) = P(X ≥ x). For each day, we fit the in-degree and out-degree to several different discrete

12 In this model, one starts with n nodes, connecting every pair of nodes with probability p, which creates a network with, on average, pn(n− 1)/2 links.
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Fig. 13. Average node strength and link weight, from April 1, 1997 to December 29, 2006. Top left: node strength, defined in terms of value. Top right:
link weight, defined in terms of value. Bottom left: node strength, defined in terms of number of payments. Bottom right: link weight, defined in terms of
number of payments.

distributions, which are all defined on the set of positive integers. The distributions are the power law, geometric, Poisson
and negative binomial distributions. Since the Poisson distribution does such a poor job of describing the distribution of
node in-degree or out-degree, we can conclude that the addition of new connections between banks in the federal funds
market does not follow the model of Ref. [28]. The power law distribution provides the best fit for out-degree, while the
negative binomial distribution provides the best fit for in-degree.13

7.4. Link weights and node strength

Weights are attached to links in a network to differentiate the importance of each link. The strength of a node is the sum
of the weights of all links attached to it.
Definition: The in-strength of a node is the sum of the weights on incoming links from predecessors, sini =

∑
jwji.

The out-strengthis the sum of the weights on outgoing links to successors, souti =
∑
jwij. The average in-strength is

equal to the average out-strength and equal to the sum of the link weights divided by the number of nodes, that is,
〈sout〉 = 1

n

∑
i s
out
i =

1
n

∑
i s
in
i = 〈s

in
〉. By definition, the ratio of average node strength to the average link weight is equal to

the average degree of nodes in the network for a particular day (Fig. 13).
Discussion: In 2006, the average weight per link was $219± $16 million if weighted by value and 1.69± 0.05 payments

if weighted by volume. In 2006, the average node strength was $719 ± $57 million and 5.5 ± 0.3 payments, in-value and
volume, respectively. Therefore, the average bank sent 5.5 payments worth $720 million each day. If a bank sent at least
one loan to another bank on a particular day, then, on average, the former bank lent 1.69 payments worth $219 million on
that day. With respect to value, both node strength and link strength have been increasing steadily since 1997. Weighted
by volume, both node strength and link weight have been constant.
Banks in the core of the federal funds market have a higher node strength than other banks, even after we control

for the number of counterparties per bank. We compute, for each day in 2006, the average and maximum strength in
each component. Banks in the GSCC borrowed and lent greater than $5 billion, on average, in 2006. Activity in the other
components was much smaller. Even after we account for the difference in the number of counterparties between banks in
the GSCC and other components, the nodes in the GSCC have a much higher strength than nodes in other components. For

13 For the daily distributions of in-degree, the average estimated parameters for mean and variance were r̂ = 0.154 ± 0.023 and p̂ = 0.045 ± 0.008,
respectively. The parameter estimate for the power law fit of the out-degree distribution was sensitive to the choice of a. When the whole out-degree
distribution is fit to a power law the average parameter estimate was γ̂ = 1.76± 0.02; if only nodes with out-degree greater than two are included, the
estimate was γ̂ = 2.00± 0.05. Finally, if nodes with out-degree greater than four are fit to a power law distribution, then the average parameter estimate
was γ̂ = 2.24± 0.06.
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Table 3
Average in-strength (measured in millions of dollars), average out-strength, maximum in-strength and maximum out-strength for each component. Each
entry gives the average value across all networks in 2006.

GSCC GIN GOUT Tendril DC

〈sini 〉 5,935 162 652 165 44
〈souti 〉 5,139 351 13 25 10
max sini 65,630 914 9011 1180 70
max souti 80,040 9297 713 482 31

Fig. 14. Complement of the CDF of node strength for September 29, 2006. In the left panel, node strength is set to the value received by the node. In
the right panel, node strength is set to the number of payments received by the node. The distribution of nodes strength, if defined by in-value, follows a
log-normal distribution.

instance, while 〈kini 〉, which is the average degree, is roughly 3.2 times larger in the GSCC relative to the GIN, 〈s
in
i 〉 is more

than nine times larger in the GSCC than in the GIN (see Table 3).
The distributions of node strength have a heavy right tail (see Fig. 14). Node strength, defined by the number of payments

a bank receives, follows a negative binomial distribution. If strength is defined by the number of payments a bank sends,
then the distribution of node strength follows a power law distribution.14 Finally, node strength, defined by value sent or
value received, follows a log-normal distribution (see Fig. 14).
For each bank, for eachday in 2006,weplot the bank’s in-(out-)degree against its in-(out-)node strength. Not surprisingly,

the two measures are highly correlated with one another. The log–log scaling of this figure obscures the fact that, for most
degrees, the distribution of node strength, conditional on the degree of the node has a very heavy right tail. The cloud of data
points in the 200–400 payment, 30–60 in-degree range comes from one individual bank. Apparently, this bank borrows a
larger-than-average number of loans fromeach counterparty. Likewise, a different bank lends a larger-than-average number
of payments to each counterparty. In Fig. 15 we see an almost linear relationship between log (degree) and log (strength).
However, for banks that lend to or borrow from more than 30 counterparties, the value and number of loans sent increase
at a faster rate. Based on this figure, it seems reasonable (at least for small degree values) to regress the logarithm of node
strength against the logarithm of node degree. For nodeswith in-degree less than 30, a doubling node in-degree corresponds
to payments received increasing by a factor of 2.16 and value received increasing by a factor of 3.54.When out-degree is less
than 20, a doubling of node out-degree leads payments and value sent to increase by factors of 2.10 and 3.51, respectively.

7.5. Degree correlation

Network analysis provides insights on trading patterns. In the federal funds market, the likelihood that a bank interacts
with another bank depends on the characteristics of the two banks. Close competitors in a local market may choose not
to trade with each other. As argued above, the notion of degree is a key characteristic of nodes. A network is said to be
assortative if the degree of a node is positively related with the degrees of its neighbors, disassortative if the degree of a node
is negatively related with the degrees of its neighbors, and uncorrelated if there is no relationship between the degree of a
node and the degree of its neighbors.
Definition: Degree correlations refer to the notion that the probability that a node of degree ki is connected to another

node of degree kj depends on the value of ki. This correlation can be completely described by the joint degree distribution

14 Similar to the out-degree distribution, the power law parameter estimate depends on the cutoff point, a. If only nodes that send greater than two
payments are considered, then γ̂ = 1.89± 0.04. Increasing the cutoff point will increase the estimate of γ .
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Fig. 15. Relationship between node degree and node strength in 2006. Top left: in-value strength by in-degree. Top right: in-volume strength by in-degree.
Bottom left: out-value strength by out-degree. Bottom right: out-volume strength by out-degree.

P(ki, kj). However, estimation can be difficult. In particular, any difficulties in estimating the marginal degree distributions
due to fat tails are magnified when estimating the joint degree distribution. Hence, it is often more practical to compute the
correlation between the degrees of the nodes at each end of a link [30].
While the correlation between the degree of the nodes at each end of a link is one way to describe the assortativity of

the federal funds network, a richer understanding comes when we compute the average degree of the neighbors of banks
that have a particular degree. For example, the average in-degree of the successors of a node is

〈kinS 〉i =
1
kini

∑
j∈Si

kinj (7)

and the average in-degree of the successors of nodes with out-degree x is given by

〈kinS 〉(x) =
1∑

i
1(kouti = x)

∑
i

〈koutS 〉i1(k
out
i = x). (8)

It is also possible to construct weighted versions of these measures. For example, Ref. the weighted average in-degree of the
successors of a node is

〈k̃inS 〉i =
1
sini

∑
j∈Si

wijkinj (9)

and the weighted average in-degree of the successors of nodes with out-degree x is the average of 〈k̃inS 〉i across nodes in the
network for which kouti = x.
Discussion: The federal funds network is disassortative.15 In 2006, the correlation coefficients between the in- and out-

degrees of two neighbors were all negative, ranging from−0.06 to−0.28, depending on the combination (see Table 5). This
implies that low-degree banks are more likely to trade with high-degree banks than other low-degree banks. Weighting
by the value lent across links decreases the disassortativity of the network. Since high-degree banks are more likely to be
associated with large-value links as shown in Fig. 15, this suggests that even though small banks are not likely to interact
with small banks, large banks do interact with large banks.

15 The authors in Ref. [14] find the same result for the Fedwire payments network.
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Fig. 16. For 2006, the relationship between node in-(out-)degree and the average out-(in-)degree of the nearest predecessor (successor).

The correlation coefficients between node degrees at each end of a link do not give the full story. From the top panel
of Fig. 16, we see that the borrowers (i.e., the successors) from banks that lend to only a few other banks (i.e., low out-
degree) are banks that borrow from many institutions (i.e., high in-degree). In other words, when a small bank is lending,
the borrower is likely to be a larger bank that borrows from many institutions. Conversely, banks that lend to many other
banks (i.e., high out-degree) are lending to institutions (i.e. its successors) that have relatively few counterparties that they
borrow from. The solid line (blue line inweb version) in the bottom panel tells a similar story. Banks that borrow from only a
few counterparties (i.e., low in-degree) are borrowing from banks that lend tomany institutions. If a bank is borrowing from
a large number of institutions, however, it is borrowing from banks that are lending to a small number of counterparties.
These relationships aremost pronounced for degrees less than 20. Finally, these relationships becomeweaker (or disappear)
if we weight links by value.

7.6. Clustering coefficient

Another common measure of association between nodes is the probability that two nodes that are the neighbors of the
same node, themselves share a link. This is equivalent to the observation that two people, each of whom is your friend, are
likely to be friends with each other.
Definition: Following Ref. [31], we define the weighted out-clustering coefficient of node i as

C̃outi =
1

souti (k
out
i − 1)

∑
j,h

(wij + wih)

2
aijaihajh, (10)

where wij is the weight on the link from node i to node j, kouti is the out-degree of node i, and souti is the out-strength of
node i. The weighted in-clustering coefficient is defined analogously. For the unweighted clustering coefficient, wij in Eq. (10)
is replaced by aij and si is replaced by ki. In a tree network, the clustering coefficient for each node is zero, while in a classical
random network the clustering coefficient is equal to the average degree divided by the number of nodes in the network.
The clustering coefficients for the network are obtained by taking the average across nodes. For example, the weighted
out-clustering coefficient for a network is

C̃out =
1
n

∑
i

C̃outi . (11)

Discussion: In 2006, the network in-clustering coefficient was 0.10 ± 0.02, and the out-clustering coefficient was
0.28± 0.02 (see Table 5). The two network clustering coefficients are highly correlatedwith one another over time. They are
lower compared to their 1997 levels and have been constant since 2001. The weighted versions of the network clustering
coefficients are somewhat higher. The average weighted out-clustering coefficient was 0.30 ± 0.02 in 2006. The weighted
in-clustering coefficient was 0.13 ± 0.02. Hence, two of bank i’s successors(predecessors) are slightly more likely to be
connected if the amount lent (borrowed) by bank i to these two counterparties is relatively large (Fig. 17).
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Fig. 17. Network in/out-clustering coefficient, from April 1, 1997 to December 29, 2006. The network clustering coefficient is the average of the clustering
coefficient for the nodes in the network.

Table 4
Average in-degree, average out-degree, maximum in-degree and maximum out-degree for each component. Each figure is the average across all networks
in 2006.

GSCC GIN GOUT Tendril DC

C in 0.136 0.005 0.128 0.009 0
Cout 0.289 0.298 0.012 0.022 0
C̃ in 0.196 0.005 0.146 0.009 0
C̃out 0.345 0.308 0.012 0.022 0

In the GSCC, the average in-clustering coefficient was 0.14 (see Table 4). The average out-clustering coefficient for the
GSCC was 0.29. To put this in the terminology of the federal funds market, if a bank in the GSCC lends to two institutions,
the probability that these two institutions interact with each other is 29%. The in-clustering coefficient in the GOUT is in line
with that of the GSCC, and the out-clustering coefficient of the GIN is the same as that of the GSCC. Banks in the GIN will
be lending to banks in the GSCC or to banks in the GIN. The out-clustering coefficient of a bank in the GIN is increased by
the large number of interactions between the banks in the core of the federal funds market. Conversely, the in-clustering
coefficient in the GIN is very low because lenders greatly outnumber borrowers within the GIN. If a bank in the GIN is
borrowing from two other banks, these other banks must also be in the GIN. Since it is so unlikely for these two banks to be
interacting with each other, the in-clustering coefficient of the first bank will be low. Finally, the clustering in the tendrils
is significantly lower than in other components.

7.7. Distance and diameter

Many real-world networks exhibit what is called the small-world property, where most nodes can be reached from the
others via a small number of links. The small-world property extant in the federal funds network tells us that the degree of
intermediation between net demanders of federal funds and net suppliers is small.
Definition: The distance from node i to node j, dij, is defined as the length of the shortest directed path from node i to

node j. If there is no path from node i to node j, dij is set to∞. The average in-path lengthof node i, 〈lini 〉, is equal to the
mean of {dji : dji < ∞}. Likewise, the average out-path length, of node i, 〈louti 〉, is equal to the mean of {dij : dij < ∞}.
The eccentricity of a node is the maximum distance from that node to any other node in the network. The in-eccentricity is
εini = max({dji : dji < ∞}) and out-eccentricity is ε

out
i = max({dij : dij < ∞}). The diameterof a network is equal to the

maximum eccentricity over all nodes in the network: D = max(εini ) = max(ε
out
i ).

16

Discussion: In 2006, the average in-path length was 2.4± 0.2, while the average out-path length was equal to 2.7± 0.1.
The average in-eccentricity was 4.1 ± 0.5, and the average out-eccentricity was equal to 4.5 ± 0.6. This means that, for
the average bank in the federal funds market, banks that lend federal funds can expect to have those funds lent out up to
3.5(=4.5−1)more times. In addition, for the average borrower in the federal fundsmarket, the funds that the bank borrows
had switched hands up to 3.1 more times. Finally, the network diameter averaged 7.3 ± 1.0 in 2006. These numbers have

16 The average in- and out-path lengths for the network are 〈lin〉 = 1
n

∑
i〈l
in
i 〉 and 〈l

out
〉 =

1
n

∑
i〈l
out
i 〉, respectively. The average in- and out-eccentricities

for the network are 〈εin〉 = 1
n

∑
i ε
in
i and 〈ε

out
〉 =

1
n

∑
i ε
out
i , respectively.
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Table 5
Summary statistics for network characteristics, 2006. Components: GWCC = giant weakly connected component, GSCC = giant strongly connected
component, DC = disconnected components, GIN = giant in-component, GOUT = giant out-component. Nodes, Links, Degree of Completeness and
Reciprocity: α = Degree of Completeness, % = Reciprocity, ρ = Correlation coefficient of adjacency matrix. Distance Measures: 〈l〉 = average path
length, 〈ε〉 = average eccentricity, D = diameter. Degree Distribution: k = degree, γ̂ = Power Law estimate for out-degree distribution, r̂, p̂ = Parameter
estimates for fitting in-degree to negative binomial distribution. Degree Correlation (4 of 8 possible combinations given): kouti = Out-degree of sending
institution, kini = In-degree of sending institution, k

in
j = In-degree of receiving institution. Link Weights and Node Strength: w = link weights, s = node

strength, γ̂ = Estimate of power law coefficient for distribution of node strength, defined by number of payments sent. r̂, p̂ = Estimate of negative binomial
parameters for distribution of node strength, defined by number of payments received.

Mean Med Min Max SD Mean Med Min Max SD

Payments Distance measures
Volume (,000) 2.6 2.6 1.0 3.0 0.1 〈lin〉 2.4 2.4 2.0 3.0 0.2
Value ($bn) 338.1 336.9 140.1 421.3 25.7 〈lout〉 2.7 2.7 2.3 3.2 0.1
Average ($mn) 129.7 128.9 114.0 150.0 7.0 〈εin〉 4.1 4.1 3.1 6.1 0.5
Median ($mn) 50.2 50.0 50.0 60.0 1.2 〈εout〉 4.5 4.4 3.6 6.6 0.6
Components D 7.3 7 5 10 1.0
GWCC 463.0 463 302 500 15.3 Degree distribution
DC 7.1 8 0 16 3.8 〈kouti 〉 = 〈ki〉 3.3 3.3 2.1 3.5 0.1
GSCC 47.2 47 28 66 5.7 Max kouti 48.8 49.0 32.0 62.0 6.4
GIN 270.1 269 123 340 27.5 Maxkini 127.6 125.5 64.0 182.0 16.3
GOUT 79.0 78 36 119 16.0 γ̂ (a = 2) 2.00 2.05 1.90 2.44 0.05
Tendrils 66.8 66 34 103 12.9 r̂ 0.15 0.11 0.10 0.24 0.02
Nodes, Links, Deg. of completeness and reciprocity p̂ 0.05 0.03 0.03 0.11 0.01
Links 1543 1543 634 1696 72.2 Degree correlation
Nodes 470.2 470 307 511 15.3 Cor(kouti , k

in
j ) −0.28 −0.28 −0.33 −0.20 0.02

α (%) 0.70 0.70 0.62 0.80 0.03 W.Cor(kouti , k
in
j ) −0.06 −0.06 −0.17 0.07 0.04

% (%) 6.5 6.5 4.6 8.5 0.8 Cor(kini , k
in
j ) −0.13 −0.13 −0.16 −0.10 0.01

%̃ (%) 43.0 43.4 30.2 48.9 3.2 W.Cor (kini , k
in
j ) −0.12 −0.12 −0.22 −0.01 0.04

ρ (%) 5.8 5.8 3.9 7.8 0.8 Link weights and node strength
ρ̃ (%) 7.0 6.9 2.9 12.4 1.7 〈w〉 ($mn) 219 217 186 274 16.3
Clustering 〈w〉 (Volume) 1.69 1.68 1.59 1.85 0.05
C in 0.10 0.10 0.05 0.14 0.02 〈s〉 ($mn) 719 713 456 900 56.8
C̃ in 0.13 0.13 0.07 0.17 0.02 〈s〉(Volume) 5.54 5.53 3.40 6.23 0.26
Cout 0.28 0.28 0.19 0.36 0.02 γ̂ (a = 2) 1.89 1.95 1.80 2.16 0.04
C̃out 0.30 0.30 0.21 0.38 0.02 r̂ 0.12 0.10 0.09 0.17 0.02

p̂ 0.02 0.02 0.01 0.05 0.00

been relatively constant over the sample period. Average out-path length andout-eccentricity have been consistently greater
than the average in-path length and in-eccentricity. This relates to the asymmetric structure of the federal funds market.
Previous studies have described the long chain of transactions in which small regional banks lend to medium-sized banks
which then lend to large money-center banks. These large banks will lend to each other or, possibly, lend to medium-sized
banks (see Ref. [1] or Ref. [6]). While it may take a long time for funds to accumulate and reach the money-center banks,
once they arrive they are quickly dispersed to those who demand them.

7.8. Node centrality

Within network analysis, centralitymeasures are used to determine the relative importance of a nodewithin the network.
The Bonacich centrality of a node has been shown to predict bargaining power in exchange networks [32]. Here, we explore
whether such measures can help predict the rates that banks are paying to borrow or being paid to lend to one another.
Definition: Node centrality measures are used to identify the position of each bank in the federal funds market. We use a

centrality measure that was introduced by Bonacich in Ref. [33]. The Bonacich centrality of node i is equal to the ith entry of

b(α, β,W ) = α[I − βW ]−1W1 (12)

where α is a scaling parameter used to set the norm of b equal to the number of nodes in the network (see Ref. [33]), I is the
identity matrix, β is a decay factor,W is the weight matrix defined in Section 5 and 1 is a vector of ones. The parameter β
can take values in the range

[
−
1
|L| ,

1
|L|

]
, where L is the eigenvalue ofW which has the largest absolute value. This centrality

measure incorporates the lending activity of a bank as well as the lending activity of its successors. Banks that lend large
sums of money will, for themost part, have large centrality scores. Depending on the parameter, β , the centrality scores of a
bank’s neighbor can positively or negatively affect the bank’s centrality score. For β = 0, the Bonacich centrality of a node is
independent of the Bonacich centralities of its neighbors: the Bonacich centrality is proportional to the out-strength of the
node. For β > 0, central nodes have a larger positive effect on the Bonacich centrality of their neighbors than nodes with
low centrality scores do. Banks that lend a lot of money or banks that lend to counterparties with high lending activity will
have the highest Bonacich centrality scores. As β gets bigger, the effect of a node’s centrality on its neighbors becomesmore
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Fig. 18. Left: Federal funds network on January 31, 2006, between 8:30 and 9:00 a.m. Yellow denotes high-value links. Red is used for low-value links.
Right: The matrix,W , for the same period of time.

Table 6
Bonacich centrality scores for the network of Fig. 18, using different decay parameters and weight matrices.

i b(α, β,W )

W T (borrow) W (lend)
1/L 1/2L 0 −1/2L −1/L 1/L 1/2L 0 −1/2L −1/L

1 0.02 0.83 2.66 1.87 0.02 0.00 0.00 0.00 0.00 0.00
2 0.01 0.01 0.01 −0.01 −0.01 0.09 0.76 2.65 4.84 0.09
3 1.14 2.10 4.56 3.74 1.14 1.67 2.60 4.67 4.46 −1.67
4 0.16 0.19 0.15 −0.15 −0.16 −0.00 −0.00 0.00 0.00 0.00
5 0.22 0.26 0.21 −0.21 −0.22 6.80 6.44 4.32 −1.00 6.80
6 4.67 5.65 4.44 −4.53 −4.67 0.09 0.38 1.21 2.15 0.09
7 5.08 3.44 1.18 3.30 5.08 0.00 0.00 0.00 0.00 0.00

pronounced. Conversely, for β < 0, a node will have a high Bonacich centrality score if it shares links withmany nodes with
low centrality scores.
UsingW T instead ofW in the calculations will give centrality scores with a different, but equally valid, interpretation.

WhenW is used, banks that lend a large amount of reserves will have a high centrality score. However, it is equally valid to
believe that banks that are the biggest players on the borrowing side of themarket should be defined as themost central.We
use bi(α, β,W T ) to denote the Bonacich centrality of a node, whereW T is used as theweightmatrix. UsingW T is equivalent
to usingW , with the direction of all the links reversed.
Example: In this example, we use activity from a half-hour interval to show how these centrality scores are computed.

Fig. 18 presents the network of federal funds activity that took place between 8:30 and 9:00 A.M. on January 31, 2006 both
as a graph and as a weight matrix. High-value links are marked in yellow, while low-value links are colored red. Between
8:30 and 9:00, the largest payments are made by node 3 (to node 6) and node 5 (to node 3). All nodes receive at least one
payment, but three of the nodes (1, 4, and 7) do not initiate any payments.
The Bonacich centrality scores for different values of β are computed in Table 6. We will allow β ∈

{
−
1
L ,−

1
2L , 0,

1
2L ,

1
L

}
.

Nodes 1, 4 and 7 have Bonacich centrality scores of 0 whenW is used in the calculation of node centrality. For four of the
specifications, node 3 is themost central node.When β is positive b(α, β,W T ) is greater for 6 and 7 than it is for node 3. The
high-value link from node 3 to node 6 is the cause. When β is negative, nodes that share high-value links with node 3 are
penalized. For example, node 6 receives a large-value payment from node 3, the most central node in terms of b(α, β,W ).
The centrality of node 6 falls as β decreases. This, in turn, causes the centrality of node 7 to increase as β becomes more
negative.
Discussion: We regress the rate of a federal funds loan on the difference in centrality scores of the borrower and the

lender. We suspect that, if the borrowing bank has a higher centrality score than the lending bank, it will be able to extract
a lower interest rate from its counterparty. Conversely, if the lending institution has the higher centrality score, the interest
rate on the loan will be higher. We run the following regressions for each centrality measure:

r = γ0 + γ11(Centrality of lender > Centrality of borrower)+ γ21(Assets of lender > Assets of borrower)
+ γ3 Loan Size + γ4 Time of Settlement + γ5 Duration of Loan + ε (13)

where r is the interest rate on the loanminus the effective federal funds rate on that day. The centrality and assets measures
are computed based on data from the month preceding the loan. The results from the regressions are presented in Table 7.
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Table 7
Coefficient estimates for the regression of Eq. (13).

# Centrality
measure (CM)

Lender bigger
than borrower,
CM

Lender bigger
than borrower,
assets

Loan size, $bn Time settled (h) Duration (h) Adjusted R2

1 bi(α, 1/L,W T ) 1.86 1.81 1.22 0.02 0.38 0.025
2 bi(α, 1/2L,W T ) 1.89 1.80 1.23 0.02 0.38 0.025
3 bi(α, 0,W T ) 1.86 1.79 1.21 0.02 0.38 0.025
4 bi(α,−1/2L,W T ) 1.47 1.87 1.13 0.02 0.38 0.023
5 bi(α,−1/L,W T ) 1.13 1.99 1.13 0.02 0.38 0.022
6 bi(α, 1/L,W ) 3.10 1.86 0.79 −0.07 0.25 0.034
7 bi(α, 1/2L,W ) 3.37 1.86 0.79 −0.07 0.24 0.036
8 bi(α, 0,W ) 3.42 1.85 0.80 −0.08 0.24 0.037
9 bi(α,−1/2L,W ) 2.52 1.83 1.04 −0.02 0.30 0.036
10 bi(α,−1/L,W ) 1.76 2.21 1.27 −0.03 0.36 0.026
11 sini , volume 1.50 1.87 1.09 0.02 0.38 0.023
12 souti , volume 2.97 2.03 1.09 −0.06 0.27 0.033
13 kini 1.29 1.96 1.13 0.38 0.38 0.023
14 kouti 1.55 2.29 1.36 0.36 0.36 0.025

The adjusted R2 values vary from 2.2% to 3.7%. All coefficients have the expected signs with the exception of the time of
settlement, for which the sign depends on the specification.17 A loan with longer duration will, on average, have a higher
interest rate. The interest rate on a given loan is approximately 0.25–0.4 basis points higher for every additional hour that
the loan is held. Larger loans imply a higher interest rate. Loans where the lender has a larger asset size than the borrower
have a higher interest rate by about two basis points. Banks with higher centrality scores command better rates, even after
controlling for asset size. All centralitymeasures are statistically significant –with a p-value less than 0.001 – in determining
the rate charged between the two banks. The results are also economically significant. Loans where the lender has a higher
centrality score have an interest rate that is roughly two to four basis points higher. For a $50 million overnight loan an
extra three basis points are equivalent to an additional $42 in interest. In other words, if a bank is important on the lending
side of the market, then it can command good rates. The preferred specifications, in terms of explaining the variation in
interest rates across loans (i.e., maximizing R2) are the regressions that have β in the range −1/2L and 1/2L and use W
in computing the Bonacich centrality. For the sake of comparison, we also ran regressions using in-degree, out-degree, or
strength –measured by in-volume or out-volume – as our ‘‘centrality measures’’. All of these specifications were dominated
by those using Bonacich measures withW and β within the range listed above.

8. Conclusion

In this paper, we analyze the topology of the 2415 daily networks formed by overnight federal funds loans between
commercial banks and other financial institutions over the period April 1, 1997, to December 29, 2006. These networks share
many of the characteristics found in other complex networks.We identify two relationships between network statistics and
factors external to the network. First, we find that reciprocity is correlated with the federal funds rate. Second, Bonacich
centrality is useful in explaining some of the price heterogeneity displayed in the federal funds market.
Analogous to the financial literature on systemic risk, much of the literature on complex networks focuses on the

vulnerability of networks to disruptions and the mechanisms of contagion. However, little is known about the empirical
properties of networks used to model financial markets under stress. We leave an investigation of the properties of the
federal funds network under times of turmoil – such as 9/11 or August 2007 – for future research.

Appendix A. Calendar effects

Among other graph characteristics, Iori et al. [16] look at the average degree andmaximum degree of banks in the Italian
overnight money market with respect to the day of the maintenance period. They find that as one gets closer to the end
of the maintenance period, volume, bank participation and number of links increase. We regress network statistics on the
calendar effects used in Ref. [2]. The target federal funds rate and a trend term are also included as predictors. In the last
two days of themaintenance period, degree of completeness, reciprocity, value, average degree, and the number of links are
all significantly higher. The trend and target interest rate are always highly significant. For this reason, when stating point
estimates of network statistics, we have focused only on 2006, where these two variables are not likely to have such a large
effect (Table 8).

17 The constant term is negative and highly significant in all regressions. The results of the regressions are nearly identical whether or not calendar effects
are included.
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Appendix B. Data

Fedwire is the primary interbank payment system in theUnited States and is used to process large-value and time-critical
payments between banks. Fedwire has more than 7000 participants and processes, on average, 545,000 payments worth
$2.4 trillion per day as of the fourth quarter of 2006.
Since Fedwire transactions are not explicitly identified as federal funds loans, we identify transactions as candidates for

overnight loans as transactions with value greater than or equal to $1million dollars and in round lots of $100,000.Wemark
a transaction as a federal funds loan if there is a return transaction the next business day for the original amount plus interest
within a range of plausible federal funds rates. We use 50 basis points above and below the daily maximum and minimum
rates published by the Markets Group of the Federal Reserve Bank of New York as the range of acceptable interest.18 This
algorithm was introduced in Ref. [6].
Demiralp et al. [2] conduct a detailed analysis of the robustness of the Furfine algorithm. They allow for loans as low as

$50,000, in round lots of $50,000, with rates in the range of 100 basis points above and below the maximum and minimum
reported rates. They also force the rates to be in increments of one basis point or 132 of a percent. Finally, they also allow for
separate payment and interest return payments. Using these parameters, they report results similar to those of Furfine.
The algorithm cannot distinguish between federal funds loans and Eurodollar loans (although most Eurodollar transfers

traditionally settle over CHIPS—The Clearinghouse Interbank Payments System). Thismay not be a large issue, since Bartolini
et al. [8] provide evidence that federal funds and Eurodollar loans are close substitutes.
The algorithm may also fail to identify certain overnight loans if these loans do not match our assumed characteristics.

Most notably, we do not capture any fed funds loans that occur outside of Fedwire, such as transfers entirely on a broker’s
books or correspondent rebookings. Data on the federal funds and Eurodollar loans of Euroclear in Ref. [8] confirm many of
the assumptions made by Furfine. The minimum loan was $50,000, with only a handful – less than 0.1% – under $1 million.
94.3% of the loans were in round lots of $100,000.
We use data from 2454 business days fromApril 1, 1997 to December 29, 2006. Ten days of dataweremissing: December

22–23, 1997; March 1–2, 1999; April 20, 21, 28 and 29, 1999; and October 14–15, 1999. In addition, we excluded 29 days for
which the ratio of federal funds value to total Fedwire activity was more than 2.5 standard deviations from the mean: June
30, 1997; December 15 and 24, 1997; January 20, 1998; April 9–10, 1998; June 30, 1998; July 2, 1998; April 1–2, 1999;
December 23–24, 1999; April 20–21, 2000; April 13, 2001;March 28–29, 2002; July 30, 2002; April 18, 2003; April 9, 2004;
June 10, 2004; December 23–24, 2004; March 24, 2005; April 13–14, 2006; and May 11, 2006. This follows the practice of
Ref. [2], who note that these days are most likely the result of the algorithmmisidentifying loans. Two additional days, with
suspiciously low volumes, were deleted. These were January 31, 2000, and July 2, 2001. Many of the days removed from
consideration are Good Friday or the following Monday. In the end, we are left with 2415 days of federal funds data.
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