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Complex social networks have received increasing attention from
researchers. Recent work has focused on mechanisms that produce
scale-free networks. We theoretically and empirically characterize
the buyer–supplier network of the US economy and find that
purely scale-free models have trouble matching key attributes of
the network. We construct an alternative model that incorporates
realistic features of firms’ buyer–supplier relationships and estimate
the model’s parameters using microdata on firms’ self-reported
customers. This alternative framework is better able to match
the attributes of the actual economic network and aids in further
understanding several important economic phenomena.

industrial organization | network dynamics

Firms’ interconnections through buyer–supplier relationships
affect economic phenomena ranging from the spread of in-

novative ideas (1) to the transmission of economic shocks (2) to
trade patterns (3). Recognizing this, economists have started to
pay explicit attention to firm network structures (refs. 4 and 5
and the studies discussed in ref. 6). However, no one has theo-
retically or empirically characterized the actual firm network
structure in any large economy. Here, we establish basic features
of the buyer–supplier network of firms in the United States and
develop a model of firm birth, death, and input–output link
formation that closely replicates the observed network.
Earlier research modeled the formation and structure of

complex social networks more broadly. Examples include links
on the worldwide web (7), job-search networks (8), and friend-
ships (9); refs. 10 and 11 have recent surveys. Much of this recent
work was spurred by seminal work (7) documenting the scale-
free nature of many networks. We show, however, that scale-free
network models miss important elements of the US economy’s
firm network. In particular, the fat-tail nature of scale-free
networks overstates the connectivity of the economy’s most
central vertices—that is, the most vertically interconnected
firms. At the same time, it overpredicts the number of minimally
connected firms.
We propose an alternative model of network formation that

better matches the connectivity distribution of US firms. Fol-
lowing the model in ref. 12, our model adds processes for
vertex (firm) death and reattachment of those edges (buyer–
supplier relationships) among surviving firms. It also allows
new edges to be formed through a mix of the preferential at-
tachment mechanisms emblematic of scale-free network mod-
els (where new edges are more likely to be formed with vertices
that already have more edges) and random attachment (similar
to that in ref. 13). Although these extensions are sparsely pa-
rameterized, they considerably extend the ability of network
formation models to match observed firm network structures.
Importantly, they also embody realistic features of the actual
firm network: firms often go out of business, and many sup-
pliers actively prefer to work with less-connected downstream
firms because of product specialization and long-term con-
tracting issues. We estimate our model’s parameters using
microdata on firms’ self-reported buyer–supplier links. This
approach shows that the model, despite being estimated using
variation at the micro level, is able to closely match the macro
distribution of firm connectedness. Using the model, we can

predict economic phenomena such as the transmission of
economic shocks throughout the network.

Modeling the In-Degree Distribution
Denote N(t) as the number of vertices, which represent firms, in
the network at any time t. Each vertex has an in-degree, k; these
k edges represent links with each of the suppliers of the firm.
Let n(k, t) denote the number of vertices of in-degree k at time

t [∑k n(k, t) = N(t)]. Let mðtÞ ≡
P

k
knðk;tÞ

NðtÞ be the average number
of customers (or suppliers) per firm. At each t, three distinct
processes act to change the network structure.

i) Death of existing firms. Firms uniformly and permanently
exit the network with probability q.* This results in the
destruction of q(2 − q)N(t)m(t) edges.† Of these destroyed
edges, q(1 − q)N(t)m(t) have the receiving vertex survive
to the next period.

ii) Rewiring of surviving firms. q(1 − q)N(t)m(t) of the edges
that were destroyed because of firm death are reformed
among surviving vertices as firms attempt to replace exist-
ing customers. We assume a fraction r of these rewired
edges is allocated uniformly (that is, with probability

1
ð1− qÞNðtÞ) across each of the surviving vertices. The remain-
ing fraction of 1 − r edges is allocated by preferential
attachment: a vertex with k surviving edges receives
a rewired edge from another surviving firm with probabil-
ity k

ð1− qÞNðtÞmðtÞ, the vertex’s share of surviving edges in
the network.

iii) Birth of new firms. (g + q)N(t) new vertices enter the
network, each forming m(t) edges. A fraction δ of these
edges extends to existing firms. A fraction 1 − r is allocated
by a preferential attachment rule, whereas the other r of
the δ(q + g)N(t)m(t) edges is allocated uniformly across
the existing vertices. Finally, 1 – δ of the (q + g)N(t)m(t)
new edges is assumed to be distributed uniformly and in-
dependently among the other (q + g)N(t) new firms that
entered at the same time. Note that, because q is the
average probability of vertex death, g is the net average
growth rate of the number of vertices in the network.

The structure of a network with these growth and decay fea-
tures in which edges and nodes appear and disappear probabi-
listically can be approximated by the following partial differential
equation (12) (Eq. 1):
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edges that have the receiving vertex exit the network, and q2N(t)m(t) edges that have
both the receiving and sending vertex exit the network. Combining these terms, there
are (2q – q2)N(t)m(t) edges that are destroyed each period.
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∂
∂t

nðk; tÞ þ ∂
∂k
½nðk; tÞγðk; tÞ� ¼ βðk; tÞNðtÞðqþ gÞ− qnðk; tÞ: [1]

γ(k, t) is the in-degree growth rate of a vertex, and β(k, t) is the
in-degree distribution of entering vertices. We derive these
expressions below. This mass balance equation says that the in-
ternally accumulated change in the network’s in-degree structure
must equal the net change caused by birth and death.
The expressions β(k, t) and γ(k, t) are determined as follows.

Recall that (q + g)N(t)(1 – δ)m(t) new edges are distributed
uniformly among the (q + g)N(t) new firms at t. Because these
edges are allocated independently, the in-degree distribution for

an entering vertex is Binomial
�
ðg þ qÞNðtÞð1− δÞmðtÞ; 1

NðtÞðgþqÞ

�
.

To obtain a continuous approximation to this distribution, we
use the exponential βðkÞ ¼ 1

mðtÞð1− δÞ e
− k

mðtÞð1− δÞ.
Each period, the in-degree of a vertex can change in one of

three ways. It can lose edges because of the exit of other ver-
tices, receive new edges from existing vertices through the
rewiring process, or form edges with new vertices. Putting the
three processes together, a vertex of in-degree k adds, on av-
erage, dk

dt ¼ γðk; tÞ ¼ qrðmðtÞ− kÞ þ δðkþrðmðtÞ− kÞÞðqþgÞ
1− q edges per

time step.
Let pðk; tÞ≡ nðk;tÞ

NðtÞ be the density of firms with in-degree k at
time t. Divide Eq. 1 by N(t) and rearrange (Eq. 2):

∂pðk; tÞ
∂t

þ ∂ðγðk; tÞpðk; tÞÞ
∂k

¼ βðk; tÞðqþ gÞ− ðqþ gÞpðk; tÞ: [2]

We want to solve for stationary distribution of p(k, t). Letting
t→∞ and substituting our expressions for γ(k, t) and β(k, t) into
Eq. 2 yields (Eq. 3)

∂
∂k

�
pðkÞ

�
qrðm− kÞ þ δðkþ rðm− kÞÞðqþ gÞ

1− q

��

¼ ðqþ gÞ
 

e−
k

mð1− δÞ

mð1− δÞ− pðkÞ
!
: [3]

The solution to Eq. 3 takes the following form (Eq. 4):

pðkÞ ¼ λðkþ RÞ− 1− S ×
�
Γ
�
1þ S;

R
mð1− δÞ

�

−Γ
�
1þ S;

Rþ k
mð1− δÞ

��
; [4]

where R ¼ m δðqþgÞrþqrð1− qÞ
δðqþgÞð1− rÞ− qrð1− qÞ; S ¼ ðqþgÞð1− qÞ

δð1− rÞðqþgÞ− qrð1− qÞ; λ ¼ e
R

mð1− δÞ

Sðmð1− δÞÞS, and Γ is the upper incomplete γ-function.‡
It is useful to compare this model to the predicted in-degree

distribution of a pure preferential attachment model, as in ref. 7.
The cumulative distribution function of vertex in-degree is
FðkÞ ¼ 1− η0k− η1 , and the slope of log(1 − F(k)) vs. log(k) is
constant. Departures from a linear relationship in our model
occur when δ decreases or r increases. Intuitively, for smaller δ or
larger r, a larger fraction of the edges is allocated to vertices
independent of the vertices’ in-degrees.
We will use our microdata on buyer–supplier relationships to

estimate the model’s parameters, solve for the implied steady-
state in-degree distribution using Eq. 4, and compare the result
with the observed distribution in the data.

Empirical Approach and Results
Data.We estimate the parameters of our model using yearly firm-
level data from the Compustat database. These data contain
accounting and operations information compiled from publicly
listed firms’ financial disclosures. Our firm panel spans from 1979
to 2007 and contains a total of over 39,000 firm-year observa-
tions. The longitudinal nature of the data lets us track individual
firms’ operations over time. Critically for our use here, Compu-
stat contains firms’ own reports of their major customers in ac-
cordance with Financial Accounting Standards No. 131. A major
customer is defined as a firm that purchases more than 10% of
the reporting seller’s revenue, although firms sometimes also
report customers that account for less than this. Although this
reporting threshold obviously creates a truncation in the number
of edges that we can identify downstream of a firm, they allow
us to compile much more comprehensive lists of firms’ suppli-
ers and through this, a firm’s degree of connectedness in the-
network.
In SI Text, we show that the truncation issue does not affect

the shape of the in-degree distribution; we argue that the
probability that an edge is observed is similar for edges with
a large or small receiving firm. Therefore, for firms that appear
as customers in our dataset, the fraction of edges that we miss
because of the 10% rule is similar for low and high in-
degree firms.
Table 1 shows the 10 most connected firms in our data for the

two 5-y intervals at each end of our sample period. The results
are intuitive. The early period is dominated by largemanufacturers
like the Big Three automakers, Boeing, and McDonnell Douglas,
the conglomerateGE, large retailers like Sears and JCPenney, and
AT&T. By the end of the sample, the shift of US economic activity
away frommanufacturing and to services (and particularly, health
services) during the past several decades is apparent. The Big
Three are still in the 10 most connected firms, although at a lower
rank. The most connected retailers have changed to Wal-Mart,
Home Depot, and Target, Hewlett-Packard is now the most cen-
tral technology company, andmedical goods and service providers
Cardinal Health, AmerisourceBergen, and McKesson have en-
tered the top 10.
These basic patterns are reassuring that our measures of firms’

connectedness are meaningful. That said, there are some limi-
tations to the Compustat dataset, primarily that it contains only
publicly listed firms and that different firms do not follow uni-
form listing criteria for their buyers. However, listed firms ac-
count for a very large share of private sector gross domestic
product and span virtually every sector of the US economy,
a span of coverage that few datasets can match.

Table 1. Top 10 firms from 1979 to 1983 and from 2003 to 2007

1979–1983 2003–2007

Rank Firm k Firm k

1 GM 86.4 Wal-Mart 129.8
2 Sears 50.0 GM 42.0
3 Ford 48.2 Cardinal Health 37.4
4 IBM 33.4 Home Depot 33.0
5 JCPenney 26.4 Ford 31.2
6 Chrysler 20.2 Hewlett-Packard 30.8
7 GE 19.0 Daimler-AG 30.8
8 AT&T 18.2 AmerisourceBergen 30.6
9 Boeing 15.0 McKesson 28.8
10 McDonnell Douglas 12.8 Target 25.8

k, number of suppliers in the average year.

‡The upper incomplete γ-function is given by Γða; xÞ ¼ R∞x ta− 1e− tdt. The limit of Γ(a, x) as
x → ∞ is 0.
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Estimation. Our model has five parameters, q, m, r, δ, and g. We
use our microdata on buyer–supplier links to estimate their
values in the US firm network. Four parameters can be measured
directly in the data. The vertex exit rate, q, is 0.24. The average
number of edges per vertex, m, is 1.06. The fraction of edges
connecting new vertices to previously existing firms, δ, is 0.75,
and the average growth rate of the number of vertices in the
network, g, is 0.04. The remaining parameter is r, the fraction of
edges that are assigned across existing vertices with uniform
probability rather than through preferential attachment. This is
not directly observable in the data. We can see which links are
formed but cannot directly observe their ex ante probability of
being assigned to a particular vertex. However, our model gives
an expression for the expected probability that a k in-degree
vertex received a particular link from another surviving vertex, an
observable event. We use this probability expression, r

Nðt− 1Þ þ
ð1− rÞkðt− 1Þ

Nðt− 1Þmðt− 1Þ, to estimate r using maximum likelihood. We find
that r = 0.18.§

Substituting these parameter estimates into Eq. 4 gives us the
model’s prediction of the in-degree distribution of the US
firm network.

Results. Fig. 1A overlays the distribution predicted by the pref-
erential attachment model in ref. 7¶ on the empirical distribu-
tion. The line drawn has a slope of −1, with the intercept chosen
to provide the best fit to the data. The Pareto distribution pre-
dicted by the model has more mass in the right tail than does the
actual network: the most central firms in the network (e.g., Wal-
Mart, GE, and Cardinal Health) have fewer buyer–supplier links
than the model would predict. Furthermore, the Pareto distri-
bution overpredicts the mass of firms that have low in-degrees.k

Both of these deviations from the actual distribution are po-
tentially important for evaluating the importance of firm in-
terconnectedness. The roles of the most central firms are, of
course, the focus of much research. For example, refs. 16–18
study whether—depending on the structure of the network—
a shock to one financial institution can cause a systemic crisis.
Although the less-connected firms are individually less critical to

the operation of the production network, their sheer joint mass
makes them an important aggregate force as well.
Fig. 1B adds the predicted in-degree distribution from our

model. Its features introduce a curvature in the relationship
between log(1 − F(k)) and log(k) that fits the data better than the
linear relationship of the standard preferential attachment
model. Our model has a direct departure from the preferential
attachment mechanism in that a fraction r of the rewired edges
and a fraction 1 − δ + δr of the edges from entering vertices are
allocated uniformly across existing vertices. The possibility that
not all edges are allocated on the “big get bigger” basis of the
preferential attachment mechanism helps capture this curvature.
As discussed in the Introduction, this departure from preferen-
tial attachment captures realistic features of buyer–supplier

1

0.1

0.01

0.001

1−
F

(k
)

1 2 5 10 20 50 100
k

1

0.1

0.01

0.001

1−
F

(k
)

1 2 5 10 20 50 100
k

A B

Fig. 1. Model fit. (A) Preferential attachment model, with data for 2005 (squares) and 2006 (triangles). (B) Model of section two (dashed line) and pref-
erential attachment model (solid line), with data for 2005 (squares) and 2006 (triangles).

Fig. 2. Buyer–supplier network in 2006. GM, Ford, and Chrysler are colored
red. Their suppliers are colored orange. All other firms are gray.

§Our estimate of r is the maximand of LðrÞ ¼Pnew links log
�
r 1
Nðt −1Þ þ ð1− rÞ ki ðt −1Þ

mðt −1ÞNðt −1Þ

�
.

¶Refs. 14 and 15 also propose models of city and firm growth, respectively, that generate
this predicted distribution.

kFrom Fig. 1A, we see that a pure preferential attachment model would predict that
84% of firms reported no major suppliers. In 2005, only 62% of the firms reported no
major suppliers.
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networks in an economy where product specialization and ver-
tical contracting considerations may reward tight connections
between small numbers of vertically connected firms.
We note that we estimate the model’s parameters from

the relationships existing within the microdata and then use the
model to project the implications of these parameters out to the
cumulative distribution function for the network. We do not sim-
ply choose the parameters to find the best-fit curve to the cumu-
lative distribution function. Thus, themodel is consistent with both
the micro- and macroattributes of the buyer–supplier network.
Our model still preserves the feature of pure preferential at-

tachment models that the probability that a firm adds new sup-
pliers is positively and significantly related to its number of
vertical links with existing firms. We verify that this property
holds in the data using a logistic regression, where the dependent
variable is the probability that a new link forms between two
vertices in a given year (the full regression results are available in
SI Text). A 1-SD increase in the previous in-degree of vertex j is
associated with a 0.03% increase in the probability that a new
link forms from vertex i to vertex j (the unconditional probability
that a new link forms to vertex j from vertex i is 0.26%). How-
ever, these results indicate that many other factors affect the
probability that two firms are linked. Firms in the same industry
are more likely to be linked to one another, and firms that are
geographically close to one another are more likely to be linked
to one another. The influence of these other factors is not
accounted for in a pure preferential attachment model, and this
could be one reason why such models miss important empirical
features of the observed buyer–supplier network.
One useful application of mapping the network structure is

that it facilitates assessment of the US production system’s vul-
nerability to shocks. Taking as motivation the recent turmoil in
the US automotive industry, we consider the effects of a negative
shock to the Big Three auto manufacturers. Fig. 2 shows the

2006 firm network, with the Big Three in red, their immediate
suppliers in orange, and all other firms in gray.** The Big Three
were responsible for $82 billion dollars in purchases from their
suppliers in 2006. Assuming a 45% drop in the Big Three’s
purchases (commensurate with their drop in unit sales during
2007–2009), these immediate suppliers would suffer a short-run
loss of business of $37 billion. The network map indicates that
this immediate spillover impact would affect a substantial but not
overwhelming portion of the production network.

Conclusion
We have theoretically and empirically characterized the buyer–
supplier network of the US economy. Scale-free frameworks that
have seen increasing use in modeling social networks have
trouble matching the network’s empirical in-degree distribution.
We propose an alternative model that parsimoniously incorpo-
rates realistic features of firms’ buyer–supplier relationships.
Estimating the model from microdata on firms’ self-reported
customers, we find that our alternative framework is better able
to match the attributes of the actual economic network.
Besides its obvious connection to other work on social net-

works, we see this research as also being related to investigations
into the firm-size distribution (15, 19–22). Those investigations
have tied features of firm growth to issues of broader economic
importance, such as the ability (or inability) of the macro-
economy to absorb idiosyncratic shocks. An application of the
current paper’s framework, which is a topic also considered in
ref. 23, is to explore the potentially more direct roles that firm
connectedness might play in explaining such issues.
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Supporting Information
Atalay et al. 10.1073/pnas.1015564108
SI Text
SI Text contains five sections. In the first section, we discuss Eqs.
1–4. In the second section, we briefly describe the dataset. In the
third section, we provide a sensitivity analysis of our maximum
likelihood estimate of r. In the fourth section, we present the
results of a series of regressions, which characterize the proba-
bility that two firms are linked to one another. Finally, in the fifth
section, we examine the importance of one potential source of
sample selection bias.

Eqs. 1–4
Eqs. 1 and 2. Eq. 1 in the main text is (Eq. S1)

∂
∂t

nðk; tÞ þ ∂
∂k

½nðk; tÞγðkÞ�
¼ βðk; tÞNðtÞðqþ gÞ− qnðk; tÞ: [S1]

In this equation, n(k, t) is the number of vertices with in-degree k
at time t, γðkÞ ≡ dk

dt is the rate at which vertices of in-degree k gain
new predecessors, q is the rate at which vertices leave the net-
work, g is the growth rate of the number of vertices in the net-
work, and β(k, t) is the in-degree distribution for entering
vertices. Finally, NðtÞ ¼ Ðnðk; tÞdk is the total number of vertices
in the network at time t.
Eq. S1 is analogous to equation 3 in ref. 1. This partial dif-

ferential equation (PDE) describes the evolution of the distri-
bution of in-degrees across time. Eq. S1 is a special case of the
Forward Kolmogorov Equation in which there is no variability in
the growth of the in-degree of an existing vertex. For example,
see ref. 2 or section 3.4 in ref. 3 for a discussion of the Forward
Kolmogorov Equation. To derive Eq. S1, one could follow an
argument given on pages 915–917 of ref. 4. This argument in-
volves counting the number of vertices with an in-degree be-
tween k0 and k1 at times t and t + Δ for some small, positive Δ.
As Δ approaches 0, the relationship between the number of
vertices at time t and t + Δ approaches Eq. 1 of the main text.
To arrive at Eq. 2 of the main text, use the definition of

pðk; tÞ ≡ nðk;tÞ
NðtÞ and the product rule (Eq. S2):

∂pðk; tÞ
∂t

NðtÞ þ dNðtÞ
dt

pðk; tÞ þ ∂ðγðkÞnðk; tÞÞ
∂k

¼ βðk; tÞNðtÞðqþ gÞ− qnðk; tÞ: [S2]

Dividing by the total number of nodes at time t and rearranging
produces (Eq. S3)

∂pðk; tÞ
∂t

þ ∂ðγðkÞpðk; tÞÞ
∂k

¼ βðk; tÞðqþ gÞ−
�
qþ

_NðtÞ
NðtÞ

�
pðk; tÞ: [S3]

Because
_NðtÞ
NðtÞ ¼ g, Eq. S3 is equivalent to Eq. 2 in the main text.

Solving Eq. 3. Eq. 3 in the main text is (Eq. S4)

∂
∂k

�
pðkÞ

�
qrðm− kÞ þ δðkþ rðm− kÞÞðqþ gÞ

1− q

��

¼ ðqþ gÞ
 

e−
k

mð1− δÞ

mð1− δÞ− pðkÞ :

!
[S4]

To solve Eq. S4, we first rearrange terms (Eqs. S5 and S6):

p′ðkÞ
�
qrðm− kÞ þ δðkþ rðm− kÞÞðqþ gÞ

1− q

�

þ pðkÞ
�
− qr þ δðqþ gÞ

1− q
ð1− rÞ þ ðqþ gÞ

�

¼ ðqþ gÞ e
− k

mð1− δÞ

mð1− δÞ [S5]

and

p′ðkÞ þ pðkÞ− qrð1− qÞ þ δðqþ gÞð1− rÞ þ ðqþ gÞð1− qÞ
qrðm− kÞð1− qÞ þ δðkþ rðm− kÞÞðqþ gÞ

¼
exp
n
− k

mð1− δÞ
o�

qþ gÞð1− qÞ
mð1− δÞqrðm− kÞð1− qÞ þ ðqþ gÞmð1− δÞδðkþ rðm− kÞÞ:

[S6]

The in-degree distribution is described by a linear first-order
differential equation. A linear first-order differential equation
of the form y′(x) + f1(x)y(x) = f0(x) has a solution given

by yðxÞ ¼ e−
Ð
f1ðxÞdx

� Ð
f0ðxÞe

Ð
f1ðxÞdxdxþ κ

�
; κ is a constant of

integration.
Simple calculations yield (Eqs. S7 and S8)

exp

8<
:−

ð − qr þ δðqþgÞ
1− q ð1− rÞ þ ðqþ gÞ

qrðm− kÞ þ δðkþrðm− kÞÞðqþgÞ
1− q

dk

9=
;

¼ λ0ðkþ RÞ− 1− S [S7]

and

ð	
exp

8<
:
ð − qr þ δðqþgÞ

1− q ð1− rÞ þ ðqþ gÞ
qrðm− kÞ þ δðkþrðm− kÞÞðqþgÞ

1− q

dk

9=
;

×
e
− k
mð1− δÞ

mð1− δÞ
qrðm− kÞ
qþ g

þ δðkþ rðm− kÞÞ
1− q

9>=
>;dk ¼ − λ1Γ

�
1þ S;

Rþ k
mð1− δÞ :

�

[S8]

Asinthemaintext,R¼ m δðqþ gÞrþ qrð1− qÞ
δðqþ gÞð1− rÞ− qrð1− qÞ; S ¼ ðqþ gÞð1− qÞ

δð1− rÞðqþ gÞ− qrð1− qÞ,
and Γ is the upper incomplete γ-function; λ0 and λ1 are constants
that do not depend on k.
Multiplying the last two terms gives us (Eq. S9)
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pðkÞ ¼ λ0λ1ðkþ RÞ− 1− S
�
κ
λ1

−Γ
�
1þ S;

Rþ k
mð1− δÞ

�
:

�
[S9]

The constant of integration, κ, is chosen so that the term
in parentheses equals 0 for some bk arbitrarily close to 0. This
will ensure that pðbkÞ ¼ 0 for the bk arbitrarily close to 0.
Given this constant of integration, Eq. S9 yields (Eq. S10)*

pðkÞ∝ðkþ RÞ− 1− S
�
Γ
�
1þ S;

R
mð1− δÞ

�
−Γ
�
1þ S;

Rþ k
mð1− δÞ

�
:

�
[S10]

This is Eq. 4 in the main text.

Data
The dataset consists of variables drawn from the Center for
Research in Security Prices (CRSP)/Compustat database.
Statement of Financial Accounting Standards (SFAS) regu-

lation number 131, passed by the Financial Accounting Standards
Board in 1997, requires publicly traded firms to report sales to
customers that make up greater than 10% of the firm’s total
revenues in a given calendar year.

†

Firms are allowed to, and
sometimes do, report customers that make up less than 10% of
the firm’s revenues. For the most part, the 10% requirement
means that we observe only one or two customers for a given
firm. Different firms report their customers in different ways (for
example, a firm reporting General Motors as an important cus-
tomer may write GM, General Motors, or Gen Mtrs). To con-
struct our network of supplier–buyer relationships, we must use
a name-matching algorithm that assigns each reported customer
to a unique identifying number. This algorithm produces 39,815
firm-year observations, with 14,204 unique buyer–supplier rela-
tionships. Additional discussion of this dataset is in section 2 of
ref. 5.

‡

In Fig. S1, we plot the number of firms in our sample as well as
the average number of suppliers per firm. The number of firms in
our sample increased steadily for most of the sample period,
from 631 in 1979 to 1,848 in 2002. Although the number of firms
in our sample increased over time, the average number of sup-
pliers per firm has remained fairly constant. The average number
of suppliers per firm was slightly above one throughout the
sample period. Most firms in our dataset, however, are not re-
ported as customers by other firms. Conditional on being re-
ported as a customer by at least one firm, the number of
suppliers per firm is 3.67 during our sample period.
In addition to the data on firms’ customers, we include in-

formation on the location of the firms’ headquarters, the number of
employees, total sales, and the firm’s four-digit standard industrial
classification (SIC) industry. In Table S1, we list the industries in
our dataset that account for the largest share of revenues.
Manufacturing firms are overrepresented in our dataset. The

total revenue for firms in our dataset was $4.47 trillion in 1997;
aggregate gross output for the United States was $14.86 trillion
in that year. Slightly greater than one-half of the $4.47 trillion
can be attributed to firms in the manufacturing sector. For the
United States, only one-quarter ($3.73 trillion) of gross output
was earned by firms in the manufacturing sector.

Sensitivity Analysis of Maximum Likelihood Estimation
Of the model’s five parameters, only r cannot be estimated by
computing a sample mean of the microdata. The parameter is
the fraction of new edges that are assigned randomly among the
existing vertices. For a given value of r, the probability that
a vertex with in-degree k receives a given edge is r 1N þ ð1− rÞ k

mN.
With probability r, the new edge is assigned with equal proba-
bility to one of the N incumbent vertices. With probability 1 − r,
the new edge is assigned by a preferential attachment rule.
Under this preferential attachment rule, the probability that
a vertex with in-degree k receives the new edge is k

m·N.
The maximum likelihood estimate of r is the value, restricted

to be in the unit interval, that maximizes (Eq. S11)

LðrÞ ¼ ∑
new edges

log
�
r

1
Nðt− 1Þ þ ð1− rÞ kiðt− 1Þ

mðt− 1Þ·Nðt− 1Þ :

�
[S11]

In Eq. S11, ki(t – 1) is the in-degree (at time t – 1) of the vertex
that receives the edge, m(t – 1) is the average in-degree for
vertices that survive from period t – 1 to t, and N(t – 1) is the
number of vertices that survive from period t – 1 to period t.
When computing ki(t – 1), instead of counting the total number
of edges that i is receiving at time t – 1, we only count the edges
that are present in t – 1 and are also present in period t. This
accords with the timing of our network formation model: first,
vertices lose some of their suppliers, and then, new edges form,
some randomly and some under preferential attachment. Be-
cause the new edges form after suppliers are lost, we should not
count the lost partners when computing the in-degree for a ver-
tex (which determines the probability of forming new edges). As
we reported in the main text, the maximum likelihood estimate
of r is 0.18. This figure can be read off Table S2 in the last
column of the first row.
In the other cells of Table S2, we estimate r from Eq. S11 for

different subsamples of the dataset. In our model, the fraction of
j→i edges that are randomly assigned is the same both for edges
with j as an entering firm and edges with j as an incumbent firm.
In the first column of Table S2, we estimate r using only data for
new edges from existing vertices to existing vertices. In the sec-
ond column, we estimate r using data for new edges, where the
originating vertex was not present in the previous year. The es-
timated randomness coefficient is somewhat higher for new
vertex to existing vertex edges. We also estimate r for different

*The constant of proportionality in the solution to the PDE is expf R
mð1− δÞgSðmð1− δÞÞS . With

this constant of proportionality in hand, we can check that
Ð∞
0 pðkÞdk ¼ 1 and that Eqs. S5

and S6 hold. First,
Ð∞
0 pðkÞdk ¼ 1 holds, because

ð∞
0
ðkþ RÞ− 1− SΓ

�
1þ S;

R
mð1− δÞ

�
dk ¼ Γ

�
1þ S;

R
mð1− δÞ

�
R− S

S

and

ð∞
0
ðkþ RÞ− 1− SΓ

�
1þ S;

R
mð1− δÞ

�
dk ¼

exp
n
− R

mð1− δÞ
o�

mð1− δÞÞ− S

S
−Γ
�
1þ S;

R
mð1− δÞ

�
R− S

S
:

Second, combine the following terms,

p′ðkÞ ¼ ðmð1− δÞÞSðkþ RÞ− 2− SS
exp
	
− k

mð1− δÞ


�
kþ RÞSþ1

ðð1− δÞmÞSþ1

− ðmð1− δÞÞSðkþ RÞ− 2− SS exp
	

R
mð1− δÞ



ð1þ SÞ

×
�
Γ
�
1þ S;

R
mð1− δÞ

�
−Γ
�
1þ S;

Rþ k
mð1− δÞ

��

and

pðkÞ
− qr þ δðqþgÞ

1− q ð1− rÞ þ ðqþ gÞ
qrðm− kÞ þ δðkþrðm− kÞÞðqþgÞ

1− q

¼
�
exp
n

R
mð1− δÞ

o�
Γ
h
1þ S; R

mð1− δÞ
i
−Γ
h
1þ S; Rþk

mð1− δÞ
i��

δkðqþ gÞ þ ðm− kÞðqð1− qÞ þ δðqþ gÞÞr

× ðkþ RÞ− 1− SS exp
	

R
mð1− δÞ


�
mð1− δÞÞS × ½ gð1− qþ δð1− rÞÞ þ qð1− rÞð1− qþ δÞ�

to see that Eqs. S5 and S6 hold.
†SFAS 14, which was passed in 1977, also required publicly traded firms to report sales to
any customers that make up more than 10% of revenues.

‡With data from 1980 to 2004, Cohen and Frazzini (5), using a similar algorithm, are able
to create a dataset with 11,484 unique buyer–supplier relationships.
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time periods. The randomness coefficients are only slightly lower
in the first part of our sample period.

Probability of Link Formation
In this section, we describe the results of a series of logit
regressions. The aim of these regressions is to find variables that
are useful in predicting whether two vertices are linked to one
another. Our model predicts that the in-degree of vertex j in
period t – 1 is positively related to the probability that an edge
forms between vertex i and vertex j in year t. Of course, there are
other variables that could potentially determine whether two
firms are likely to interact with each other.
One set of variables that we use measures how similar firms are

to one another. One such measure of similarity is the physical
distance between firms. Ref. 6 has a review of the literature on
gravity equations—equations that are used to estimate the effect
of distance on the amount of aggregate trade between countries.
Disdier and Head (7) perform a metaanalysis of over 100 sep-
arate papers that estimate a gravity equation to determine how
the estimates of the effect of distance on trade flows have
changed over time. A complementary set of papers uses micro-
data to study the extent to which distance reduces the probability
that two individuals or firms will interact. For instance, the
probability that a given individual wins an eBay auction is sig-
nificantly higher when the buyer and seller are in the same city
(8). Distance, interpreted loosely, can measure individuals’ dis-
similarity along dimensions other than physical location. Using
a dataset on high school friendships, Currarini et al. (9) document
that students are significantly more likely to form connections
with their peers from the same race. In our logit regressions, we
will include not only the physical distance between firms as
an explanatory variable but also a set of indicator variables de-
scribing whether the two firms are in the same industry.
It is also possible that two individuals are more likely to be

connected when they share a common contact. This is the case in
several social networks (10). We include, as an explanatory
variable, the number of vertices, k, such that i sells to k and k
sells to j in year t.
In Table S3, we present the results of our logit regressions. The

dependent variable is the probability that firm i sells to firm j in
a given year, t ∈ {1997, . . . 2007}. The regression sample includes
all ij pairs, where i is a seller and j is a buyer in the given year. In
this sample, an edge exists for 0.26% of the ij pairs. We find that
the number of customers of firm j in year t – 1 is indeed an im-
portant predictor of the probability that an ij edge exists. Ac-
cording to the model given in the penultimate column of Table
S3, 1 SD of the previous in-degree of the customer is associated
with a 0.03% higher probability that an edge exists. An additional
common partner, k, is associated with a 0.12% increase in the
probability that an edge exists between vertices i and j.
Distance is also an important determinant of the probability

that two vertices are linked to one another. We measure the
physical distance between two firms as the great circle distance
between the headquarters of the two firms. Compared with firm-
pairs for which the supplier and customer are 100–500 mi apart,
two firms with headquarters less than 25 mi apart are 0.18%
more likely to be connected.
Firms that are in the same industry are more likely to interact

with one another. Compared with firms that are not in the same
one-digit SIC industry, firms that are in the same two-digit industry
have a 0.36% higher probability of buying from one another; firms
in the same three-digit industry have a 1.22% higher probability of
buying from one another, and firms in the same four-digit industry
have a 1.69% higher probability of buying from each other.
Table S4 presents the results from a related series of logit

regressions. Instead of running the regressions on a sample of all
ij pairs such that i is a seller and j is a buyer, we only consider
pairs where i is an entering firm (i.e., not present in the network

in the previous year). The estimated marginal effects are, in
general, similar to those reported in Table S3. A 1-SD increase
in the year t – 1 in-degree of vertex j is associated with a 0.03%
higher probability that firm i sells to firm j. Compared with firms
that are located 100–500 mi apart, firms that have headquarters
that are less than 25 mi apart are 0.18% more likely to be linked.
Compared with two firms that are not in the same industry, firms
in the same four-digit SIC are 1.87% more likely to be linked to
one another.

How Important Is the 10% Cut-Off Rule?
Introduction.Because of the way firms report who their customers
are, one may be concerned that we are undercounting the
number of suppliers, especially for small firms. Firms are told to
report all firms that account for at least 10% of their sales in
a given year. In Fig. S2, we see that there are some firms that
do report customers that account for less than 10% of sales.
However, the 10% rule does have a large effect on the number
of observed edges.
To determine whether the undercounting problem is more

severe for small firms, we will use the following two pieces of
information:

i) The right tail of the distribution of link value as a fraction
of supplier’s sales. We will try to extrapolate—using infor-
mation about the distribution to the right of the 10% cut-
off—how many missing edges there are to the left of the
10% cut-off.

ii) The characteristics of the firms in the edges with values to
the left and the right of the cut-off. Suppose, for example,
that we find that observed edges where the customer is of
below average size are not more likely to fall below the
10% cut-off. If this were the case, we would be justified
in arguing that the number of unreported edges is not
greater for small firms. To the extent that observed edges
are more likely to be small when the customer is small, we
will have evidence of more missing edges for small vs. large
firms.

In the remaining parts of this section, we will make the intuition
of the last two bullet points more precise. We proceed in three
steps. First, we will argue that the probability that an existing edge
is observed is only a function of the size of the edge as a fraction of
the supplier’s sales. Second, through extrapolation, we form an
estimate of how many total missing edges exist. Third, we use an
estimate of the effect of the size of the customer on the size of
the edge to calculate how severely we are undercounting in-de-
gree for small and large firms. To preview the main result, we find
that existing edges where the customer is 1 SD above the average
size (measured by log employees) are likely to be observed
roughly 64% of the time. Edges where the customer is 1 SD below
the average size are likely to be observed roughly 50% of the time.
In other words, the 10% cut-off is causing us to undercount in-
degree ∼30% (∼64/50 − 1) more for small firms relative to big
firms. Because the rate of undercounting is similar for small and
large firms, the shape of the in-degree distribution changes little
when we account for the unobserved edges (Fig. S4).

Probability That an Existing Edge Is Observed Is Only a Function of the
Size of the Edge as a Fraction of the Supplier’s Sales. In this sub-
section, we argue that the probability that an edge between two
firms is observed in our dataset depends only on sij, the value of
the ij edge as a fraction of the supplier’s total sales. Throughout,
we will use the following notation. Let i→j denote the event that
firm i supplies firm j. Let “observed i→j” denote the event that
firm i supplies firm j and that this edge is observed in the dataset.
Finally, let Xij denote observable characteristics of the ij pair.
Define ψðs;XÞ ≡ Pr½observed i→j j i→ j; sij ¼ s;Xij ¼ X :� We

want to argue that ψ(s, Xij) does not depend on Xij. In other
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words, given that we know sij, no other characteristics of the
supplier–buyer pairs affect whether this edge is observed. For
example, conditioning on sij, the following variables will have no
effect on whether the edge is observed:

i) the industry of the supplier or customer,
ii) the size of the supplier or customer, and
iii) the physical distance between the supplier and the customer.
We assume that ψ(s, X) = 1 for s > 0.1: all firms in the dataset

follow regulations and list all of their customers that make up at
least 10% of their sales. For s ∈ (0, 0.1), we assume that ψ(s, X)
is additively separable in s and X: ψ(s, X) = ϕ(s) + ζ(X).
Using Bayes’ Rule, the probability that an edge is reported,

given that it exists, is equal to (Eq. S12)

ψðs;XÞ ¼ Pr½sij ¼ s; and is reported j Xij ¼ X �
Pr½sij ¼ s j Xij ¼ X � : [S12]

Consider edges with share s ∈ [0.1 – ε, 0.1 + ε], with ε small. On
the left half of the interval, Pr [sij = s] and is reported | Xij = X ∼
ψ (0.1, Xij) Pr [sij = s | Xij = X].
On the right half of the interval, Pr [sij= s] and is reported |Xij=

X] = Pr [sij = s | Xij = X].
If ε is small enough, throughout the interval, s ∈ [0.1 – ε, 0.1 +

ε], Pr [sij = s | Xij = X] is just some function of Xij and inde-
pendent of s.
Thus, Pr½sij∈½0:1− ε;0:1�; and is reported jXij¼X �

Pr½sij∈½0:1;0:1þε�; and is reported jXij¼X �≈ψð0:1;XijÞ. However,
the left-hand side is estimable using data only on reported edges.
In particular, we take observed edges with sij close to 0.1 and
examine whether edges are more likely to be on one side of the
[0.1 − ε, 0.1 + ε] interval as firm-pair characteristics change.
For sij ∈ [0.09, 0.11], we run a logit regression using a sample

of observed edges between 1979 and 2007. The dependent var-
iable is equal to 1 if sij ≥ 0.1 and 0 otherwise. The independent
variables that we include are:

i) log employment of the supplier and customer,
ii) log (real) assets of the supplier and customer,
iii) industry (according to one-digit SIC code) of the supplier

and customer,
iv) the physical distance between the supplier and customer,
v) whether the two firms share the same one-digit industry,
vi) a trend variable.
In Table S5, we present the coefficient estimates and robust

SEs. Except perhaps for distance, none of the explanatory vari-
ables are statistically significant: ψ(0.1, X) does not depend on
any of the covariates that we chose. Therefore, ψ(0.1, X) =
ϕ(0.1) + C for some constant C and some function ϕ. Because of
the additive separability that we assumed for ψ(s, X), ψ(s, X) =
ϕ(s) + C.
To summarize this subsection, we defined a function ψ. This

function gives the probability of an edge with sij = s observed,
conditional on (i) the edge of size s existing and (ii) other
characteristics of the ij firms. We assumed that ψ was addi-
tively separable in s and X. Given this assumption, we showed
that, conditional on sij, buyer–supplier characteristics are not
important in explaining whether an edge is observed, given
that it exists.

How Many Missing Edges Are There to the Left of the 10% Cut-Off?
One problem is that we do not know what ϕ(s) looks like. There
should be some way to make inferences about ϕ as we observe all
edges for s ≥ 0.1 and some edges for s ∈ (0, 0.1). Suppose that
edge values, s, are distributed according to a random variable
that has an associated probability distribution function f. We
observe f only for s ∈ [0.1, 1]. Our estimates of fm(s) for s < 0.1
are the predicted values of an Epanechnikov kernel-weighted

local mth-order polynomial regression using data from s ≥ 0.1.
As we can see in Fig. S3, involving higher-order terms in the
polynomial regression increases our estimate of f over the (0,
0.1) interval.
Table S6 gives fm(s) and ϕmðsÞ ≡ fmðsÞ

Number of edges with value in bin s
for m = 0, 1, 2. This table is simply a second way to visualize the
data in Fig. S3.
Therefore, for example, based on our extrapolation, we esti-

mate that roughly 10–25% of the edges that have sij ∈ (1%, 2%)
are reported. We will use ϕ2 later on, because this provides the
most conservative estimate of the number of reported edges.

Is an Edge from Firm i to Firm j Less Likely to Be Reported When
Firm j Is Small? In this subsection, we write an equation for
Pr½i→j observed j i→j;Xij� in terms of ϕ and probabilities that can
be estimated from observable data. We will be estimating the
probability that s lies in different subintervals of the [0, 1] in-
terval using a multinomial logit regression. One of the de-
pendent variables in the multinomial regression is the size of the
customer. Setting all other covariates to their average value, we
will allow the customer size to vary. This will allow us to de-
termine the extent to which Pr½i→j observed j i→j� depends on
the size of the customer.
Again, by Bayes’ Rule (Eq. S13),

Pr½sij ¼ sji→j� ¼ Pr½observed i→j j i→j�Pr½sij ¼ sjobserved i→j�
Pr½observed i→j j sij ¼ s� :

[S13]

Because 1 ¼ Ð 10Pr½sij ¼ s jXij; i→j�ds, we have (Eq. S14)

ð1
0

Pr½observed i→j j i→j;Xij�Pr½sij ¼ s j observed i→j;Xij�
Pr½observed i→j j sij ¼ s;Xij� ds ¼ 1:

[S14]

This implies (Eq. S15)

1
Pr½observed i→jji→j;Xij

� ¼ ð1
0:1
Pr½sij ¼ sjobserved i→j;Xij�ds

þ
ð0:1
0

Pr½sij ¼ sjobserved i→j;Xij�
ϕðsÞ ds:

[S15]

Thus (Eq. S16),

1
Pr½observed i→j j i→j;Xij� ¼ Pr½sij ≥ 0:1 j observed i→j;Xij�

þ
ð0:1
0

Pr½sij ¼ s j observed i→j;Xij�
ϕðsÞ ds:

[S16]

We approximate the above equation by binning s in the following
way (Eq. S17):

1
Pr½observed i→jji→j;Xij� ≈ Pr½sij ≥ 0:1jobserved i→ j;Xij�

þ ∑
n

k¼1

Pr
�
sij∈
�
1
10

k− 1
n

;
1
10

k
n

�
j observed i→j;Xij

�

ϕ
�
1
10

2k− 1
2n

� : [S17]

With this approximation (Eq. S18),
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Pr½i→j observed j i→j;Xij�≈
 
Pr½sij≥0:1 j observed i→j;Xij�

þ
Xn

k¼1

Pr
�
sij∈
�
1
10

k− 1
n

;
1
10

k
n

�
jobserved i→j;Xij

�

ϕ
�
1
10

2k− 1
2n

�
!− 1

: [S18]

Notice that if ϕ(s) were equal to 1 (edges are always reported)
in the interval [0, 0.1], we would get that Pr½observedi→j
ji→j;Xij�¼ðPr½Sij ≥ 0:1 j observed i→j;Xij� þ Pr½Sij < 0:1 j observed
i→j; Xij�Þ− 1, which would imply that Pr½observed i→jji→j;Xij� ¼ 1;
as expected. Also note, as ϕ decreases, the second term on the right-
hand side increases, and therefore, Pr½observed i→jji→j;Xij� de-
creases.
Because we have an estimate of ϕ from the previous sub-

section, we can use Eq. S18 to estimate Pr½i→j observedji→j;Xij�.
To calculate Pr½i→j observedji→j;Xij�, we need to estimate

Pr½Sij ≥ 0:1jobserved i→j;Xij� and Pr½sij∈ð 1
10

k− 1
n ; 1

10
k
n�jobserved i→j;

Xij� for k ∈ {1, . . . n}. We do so using a multinomial logit re-
gression, with n = 10 bins. The coefficient estimates of such
a regression are presented in Table S7. Observed edges are
significantly more likely to be small when the customer is small
and the supplier is large. The first relationship is expected:
small customers are likely to demand small fractions of their
suppliers’ total sales.
Using the results of this regression and our estimate of ϕ, we

are now in a position to estimate how the probability of ob-
serving an edge varies as the size of the customer varies. In
particular, we consider how the probability varies for a hypo-
thetical edge with the following characteristics:

i) the supplier and customer are both in the manufacturing
sector (the modal sector),

ii) the year is set to 2000,
iii) the distance between the customer and supplier is in the

(500, 1,000)-mi interval,

iv) log employment of the supplier is set to the mean value in
our sample of observed edges, and

v) log employment of the customer is set to three different
values: mean − SD, mean, and mean + SD. The SD of
the log number of employees of the customer in the sample
of observed edges is 2.05.

From the ϕ2 column of Table S6 and the predicted probabil-
ities from the multinomial logit regression, we are able to com-

pute
Pr½sij∈ð 1

10
k− 1
n ; 1

10
k
n� j observed i→j;Xij�

ϕð 110 2k− 1
2n Þ (Eq. S18).

Using Eq. S18, we compute (Eqs. S19–S21)

Pr½i → j observed j i → j; big customer� ≈ 64%; [S19]

Pr½i → j observed j i → j;mean customer� ≈ 57%; and [S20]

Pr½i → j observed j i → j; small customer� ≈ 50%: [S21]

From Eqs. S19 and S21 (Eq. S22),

Pr½i → j observed j i → j; big customer�
Pr½i → j observed j i → j; small customer� ¼ 1:29: [S22]

To conclude, we assess how the difference in undercounting of
in-degree for small vs. large firms qualitatively affects the in-
degree distribution. For every firm in 2006, we divide its in-degree
by the probability that an actual edge is observed (giving an es-
timate of the actual number of suppliers for the firm). In Fig. S4,
we compare the shape of the observed in-degree distribution
with the estimated actual in-degree distribution. Qualitatively,
the shape of the in-degree distribution is similar, whether we
include the unobserved edges or not.
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Fig. S1. (Left) Number of firms in the network. (Right) Average number of customers per firm.
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Table S1. Two-digit SIC industries with the largest total revenues
(in billions of dollars) in our sample using data from 1997

SIC Industry Firms Total revenues

37 Transportation equipment 65 625.2
48 Communications 73 403.6
29 Petroleum and coal products 13 392.8
35 Industrial machinery and equipment 151 341.4
28 Chemicals and allied products 170 303.9
53 General merchandise stores 12 270.2
73 Business services 241 251.4
36 Electrical and electronic equipment 198 247.0
50 Wholesale durable goods 36 201.4
20 Food and kindred products 35 175.5

Table S2. MLE estimates

Years Existing → existing New → existing Pooled

1980–2007 0.169 (0.003) 0.181 (0.001) 0.176 (0.001)
1980–1989 0.125 (0.001) 0.170 (0.005) 0.151 (0.004)
1990–1999 0.108 (0.000) 0.168 (0.006) 0.142 (0.001)
2000–2007 0.140 (0.003) 0.208 (0.007) 0.172 (0.005)

Each cell is an MLE estimate of r using a different subsample of the data-
set. For this table, we define ki(t − 1) as the number of edges received by
vertex i that is present in both years t − 1 ant t.

Table S3. Coefficient estimates from logit regressions

Independent variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5

Previous in-degree of supplier 0.003 −0.004 −0.018 −0.017 0.002
Previous in-degree of customer 0.037 0.028 0.027 0.027 0.193
Log employees of supplier 0.047 0.063 0.063 −0.098
Log employees of customer 0.634 0.860 0.858 0.483
Distance < 25 mi 1.193 0.844 0.838 0.610
Distance in (25, 100) mi 0.490 0.341 0.337 0.224
Distance in (500, 1,000) mi −0.286 −0.209 −0.211 −0.154
Distance in (1,000, 1,500) mi −0.518 −0.447 −0.445 −0.308
Distance in (1,500, 2,000) mi −0.448 −0.414 −0.415 −0.400
Distance in (2,000, 2500) mi −0.428 −0.425 −0.425 −0.343
Distance > 2,500 mi −0.068 −0.203 −0.205 −0.173
Distance measure does not exist −0.471 −0.599 −0.599 −0.357
Same one-digit SIC −0.046 −0.046 −0.109
Same two-digit SIC 1.290 1.287 0.939
Same three-digit SIC 2.316 2.309 1.557
Same four-digit SIC 2.611 2.608 2.105
Labor productivity of supplier 0.087 0.089 0.061
Labor productivity of customer 0.970 0.966 0.513
Number of common edges 0.828 0.638
Did the edge exist in the previous year? 8.693
Did the edge exist 2 or 3 y ago? 4.849
Did the edge exist 4+ y ago? 4.164
N 7,817,891 6,784,360 6,758,319 6,758,319 6,758,319
Pseudo-R2 0.071 0.100 0.148 0.148 0.611

The dependent variable is the probability that an edge exists between vertex i and vertex j in a particular year. Year-level fixed
effects are included. Errors are clustered by ij pair. In the fourth column, all coefficients—except for previous in-degree of supplier and
same one-digit SIC—are statistically significant at the 1% level.
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Table S4. Coefficient estimates of logit regressions

Independent variable Regression 1 Regression 2 Regression 3 Regression 4

Previous in-degree of customer 0.032 0.025 0.024 0.023
Log employees of supplier 0.028 0.058 0.058
Log employees of customer 0.512 0.700 0.700
Distance < 25 mi 1.102 0.816 0.815
Distance in (25, 100) mi 0.277 0.160 0.159
Distance in (500, 1,000) mi −0.316 −0.242 −0.243
Distance in (1,000, 1,500) mi −0.504 −0.432 −0.432
Distance in (1,500, 2,000) mi −0.503 −0.455 −0.455
Distance in (2,000, 2,500) mi −0.430 −0.395 −0.395
Distance > 2,500 mi 0.042 −0.071 −0.071
Distance measure does not exist −0.352 −0.452 −0.452
Same one-digit SIC −0.094 −0.094
Same two-digit SIC 1.194 1.194
Same three-digit SIC 2.082 2.081
Same four-digit SIC 2.658 2.656
Labor productivity of supplier 0.112 0.112
Labor productivity of customer 0.761 0.760
Number of common edges 0.490
N 2,037,749 1,639,491 1,633,554 1,633,554
Pseudo-R2 0.037 0.059 0.103 0.103

The dependent variable is the probability that an edge exists between vertex i and vertex j in a particular year
conditional on vertex i entering the network. Year-level fixed effects are included. Errors are clustered by ij pair.
In the last column, all coefficients—except for common links, same one-digit SIC, distance in (25, 100) mi, and
distance >2,500 mi—are statistically significant at the 1% level.

Table S5. Coefficient estimates and robust SEs from a logit
regression

β SE

Year 0.003 0.007
Log employment customer 0.048 0.060
Log employment supplier −0.057 0.049
Log assets supplier 0.034 0.048
Log assets customer −0.056 0.057
Same industry −0.052 0.126
Supplier industry

Construction 0.010 0.497
Manufacturing 0.289 0.246
Transportation −0.128 0.274
Wholesale −0.067 0.335
Retail −0.714 0.516
FIRE −0.570 0.383
Services 0.211 0.259
Public administration −0.791 0.431

Customer industry
Construction 0.674 1.151
Manufacturing −0.033 0.335
Transportation −0.039 0.353
Wholesale −0.096 0.391
Retail 0.005 0.394
FIRE 0.319 0.461
Services 0.137 0.382
Public administration 0.227 0.566

Distance < 25 mi −0.174 0.181
Distance in (25, 100) mi −0.398 0.181
Distance in (100, 500) mi −0.057 0.135
Distance in (1,000, 1,500) mi −0.160 0.143
Distance in (1,500, 2,000) mi −0.088 0.183
Distance in (2,000, 2,500) mi 0.087 0.207
Distance > 2,500 mi 0.539 0.259
Distance measure does not exist 0.076 0.189
Constant −5.157 13.679

The dependent variable is the probability that si,j is less than 0.10 conditional
on being between 0.09 and 0.11. FIRE, finance, insurance, and real estate.
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Table S6. Number of edges and fraction of existing edges that
are observed in the dataset

Interval Observed edges f0 f1 f2 φ0 φ1 φ2

(0, 0.01) 487 — — 5,269 — — 0.092
(0.01, 0.02) 541 2,273 2,743 4,876 0.238 0.197 0.111
(0.02, 0.03) 582 2,253 2,828 4,509 0.258 0.206 0.129
(0.03, 0.04) 548 2,194 3,341 4,162 0.250 0.164 0.132
(0.04, 0.05) 579 2,125 3,385 3,836 0.272 0.171 0.151
(0.05, 0.06) 675 2,053 3,268 3,532 0.329 0.207 0.191
(0.06, 0.07) 712 1,981 3,084 3,247 0.356 0.231 0.219
(0.07, 0.08) 841 1,907 2,892 2,980 0.441 0.291 0.282
(0.08, 0.09) 852 1,833 2,693 2,732 0.465 0.316 0.312
(0.09, 0.1) 1,002 1,761 2,489 2,501 0.567 0.403 0.401

Table S7. Coefficient estimates from a multinomial logit regression

Omitted alternative: s ≥ 0.1 (0, 0.01) (0.01, 0.02) (0.02, 0.03) (0.03, 0.04) (0.04, 0.05)

Year 0.001 0.020 −0.001 −0.013 0.005
Log employment customer −0.298 −0.232 −0.211 −0.209 −0.141
Log employment supplier 0.337 0.274 0.230 0.244 0.135
Same industry −0.104 −0.256 −0.338 0.010 −0.006
Supplier industry

Agriculture 1.562 −0.204 1.499 0.875 −14.985
Construction 0.796 0.719 1.154 1.245 0.594
Manufacturing −0.018 −0.066 0.208 −0.085 −0.215
Transportation 1.025 0.483 0.268 0.159 0.509
Wholesale 0.455 −0.163 0.495 0.169 0.294
Retail 2.211 1.272 0.542 1.192 0.354
FIRE 3.918 3.264 3.201 2.329 1.519
Services 0.551 0.112 0.028 0.150 0.227
Public administration 0.013 1.193 0.736 0.807 0.167

Customer industry
Agriculture −14.695 −15.716 −15.721 −15.031 −15.571
Construction 0.360 −16.585 −16.669 −0.615 −0.614
Manufacturing 0.674 −0.078 0.059 0.469 0.078
Transportation 0.356 −0.414 −0.511 −0.170 −0.280
Wholesale −0.248 −2.170 −1.399 −1.219 −1.134
Retail 0.310 −0.652 −0.503 −0.068 −0.169
FIRE −1.132 −1.507 −1.930 −1.037 −0.923
Services 0.479 −0.646 −0.689 0.356 −0.023
Public administration 1.210 −0.895 −0.377 0.110 0.038

Distance < 25 mi 0.666 0.345 −0.477 −0.066 −0.470
Distance in (25, 100) mi 0.278 −0.072 −1.067 −0.135 −0.369
Distance in (100, 500) mi 0.151 0.471 −0.061 0.275 0.084
Distance in (1,000, 1,500) mi 0.166 0.331 −0.111 −0.348 −0.198
Distance in (1,500, 2,000) mi −0.183 0.135 −0.401 −0.261 −0.071
Distance in (2,000, 2,500) mi 0.238 0.483 0.108 −0.237 −0.180
Distance > 2,500 mi 0.105 −0.070 0.001 −0.321 −0.606
Distance measure does not exist 0.280 0.699 −0.057 0.345 0.158
Constant −6.029 −42.193 0.070 23.578 −13.072

Omitted alternative: s ≥ 0.1 (0.05, 0.06) (0.06, 0.07) (0.07, 0.08) (0.08, 0.09) (0.09, 0.1)

Year 0.023 0.011 0.006 0.009 0.005
Log employment customer −0.117 −0.130 −0.053 −0.083 −0.062
Log employment supplier 0.158 0.140 0.147 0.106 0.150
Same industry 0.020 0.131 0.004 −0.108 −0.080
Supplier industry

Agriculture −0.306 −0.486 −15.032 −0.456 −15.102
Construction 0.185 0.608 0.031 0.014 0.096
Manufacturing 0.275 0.092 −0.223 −0.306 −0.288
Transportation 0.500 0.355 0.116 0.185 −0.015
Wholesale 0.814 0.268 −0.214 0.076 0.067
Retail 0.599 −1.045 −0.400 0.207 0.623
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Table S7. Cont.

Omitted alternative: s ≥ 0.1 (0.05, 0.06) (0.06, 0.07) (0.07, 0.08) (0.08, 0.09) (0.09, 0.1)

FIRE 1.531 1.085 0.220 0.038 0.370
Services 0.537 0.296 0.020 −0.156 −0.190
Public administration 0.946 1.257 0.290 0.709 0.625

Customer industry
Agriculture −15.466 −15.657 −15.346 −15.226 −15.649
Construction −0.456 −15.695 −15.305 −15.041 −0.559
Manufacturing −0.045 −0.147 0.058 0.282 −0.284
Transportation −0.043 −0.513 −0.298 0.066 −0.409
Wholesale −1.142 −0.824 −0.600 −0.220 −0.340
Retail −0.100 −0.282 −0.280 0.133 −0.418
FIRE −1.051 −0.675 −0.101 −0.149 −0.619
Services −0.229 −0.171 0.060 0.144 −0.549
Public administration 0.326 −1.200 0.061 0.550 −0.709

Distance < 25 mi −0.075 0.002 0.009 −0.034 −0.159
Distance in (25, 100) mi −0.369 −0.104 −0.233 0.227 0.274
Distance in (100, 500) mi 0.301 0.541 0.195 0.133 0.001
Distance in (1,000, 1,500) mi −0.161 0.317 0.116 0.355 0.071
Distance in (1,500, 2,000) mi 0.175 0.355 0.087 0.365 0.042
Distance in (2,000, 2,500) mi 0.479 0.362 0.381 −0.033 −0.130
Distance > 2,500 mi −0.030 0.099 −0.044 −0.094 −0.455
Distance measure does not exist 0.338 0.322 0.066 0.221 −0.217
Constant −48.798 −25.898 −14.308 −21.781 −12.876

The dependent variable is the probability that s falls in a particular bin, with the s > 0.1 bin being the omitted alternative.
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