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Abstract
There is substantial within-industry variation in the prices that plants pay for their material inputs.
Using plant-level data from the US Census Bureau, I explore the consequences and sources of this
variation in materials prices. For a sample of industries with relatively homogeneous products,
the standard deviation of plant-level productivity would be 7% smaller if all plants faced the
same materials prices. Moreover, plant-level materials prices are persistent, spatially correlated,
and positively associated with the probability of exit. The contribution of entry and exit to
aggregate productivity growth is smaller for productivity measures that are purged of materials
price variation. After documenting these patterns, I discuss three potential sources of materials
price variation: geography, differences in suppliers’ marginal costs, and within-supplier markup
differences. Together, these variables explain 15% of the variation of materials prices. (JEL: E23,
L16, L60)

1. Introduction

There is substantial within-industry variation in the prices that establishments pay for
their material inputs, even in industries that use and produce homogeneous inputs and
outputs. This paper assesses the implications and sources of this variation in materials
prices. When input prices differ across plants, plants may have lower marginal costs
not only because they are able to produce more efficiently, but also because they are
able to purchase intermediate inputs at relatively low prices.

Accounting for the variation in materials prices1 provides new answers to two long-
standing questions: First, why are within-industry differences in plants’ measured
productivities so large? Second, what is the role of reallocation—via the entry
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of relatively productive plants and the exit of unproductive plants—on industry
productivity growth?

Large, persistent, within-industry productivity differences are ubiquitous. Syverson
(2004a), for example, estimates that, in the average four-digit manufacturing industry,
the 90th percentile plant has a total factor productivity that is approximately 90%
higher than the 10th percentile plant. Given the importance that a plant’s productivity
has for its growth and survival, as well as the strong relationship between countries’
GDPs and the average productivities of their firms, several papers have tried to explain
why some plants are productive while others are not. This literature has argued that
relatively productive plants are more likely to employ high-quality inputs (Fox and
Smeets 2011), patent (Balasubramanian and Sivadasan 2011), enter export or import
markets (Bernard and Jensen 1999; Eslava et al. 2004, 2013), and follow best-practice
management techniques (Bloom and Van Reenen 2010). In addition, productivity
dispersion is larger in markets with less-intense competition (Syverson 2004b) and in
countries with larger factor misallocations (Hsieh and Klenow 2009).

In the cited studies, plants’ productivities are calculated as the ratio of outputs
to inputs. Usually, data on input and output prices are not collected, meaning that—
in most cases—real revenues are the measure of establishment outputs, while real
input expenditures are the measure of establishment inputs.2 With these productivity
measures, an establishment’s measured productivity will depend on conditions in
output and factor markets. Potentially, an establishment’s measured productivity could
have no relationship with how efficient it is in transforming inputs into outputs.

The potential confounding effects of input and output price variation in productivity
estimation are already well known. Both Katayama, Lu, and Tybout (2009) and
Gorodnichenko (2010) argue, in detail, why plant-level measured productivities may
have little to do with plants’ technical efficiencies. These papers propose structural
estimators of establishments’ cost and revenue functions, exploiting information
derived from the solutions to their cost minimization and/or profit maximization
problems. Quantifying the extent to which input price variation confounds the
measurement of plants’ technical efficiencies is one of the main contributions of
my paper.

A second long-standing question (previously addressed by Baily, Hulten, and
Campbell 1992; Griliches and Regev 1995; Foster, Haltiwanger, and Krizan 2001;
Foster, Haltiwanger, and Syverson 2008) concerns the extent to which industry
productivity growth is driven by the intra-industry reallocation of factors towards

2. Four partial exceptions are Syverson (2004b), Eslava et al. (2004, 2013), and Ornaghi (2006). Syverson
(2004b) utilizes establishment-level output price data, but does not use establishment-level intermediate
input price data. Ornaghi (2006), however, has data on materials prices. His analysis focuses on the
estimation of input elasticities, instead of the distribution of plant-level productivities, which is the focus
here. Perhaps closest to the current paper, Eslava et al. (2004, 2013) use plant-level input and output price
data from Colombia to test the hypothesis that a trade liberalization stiffens the competitive environment,
forces low productivity plants to exit, and thus increases aggregate productivity.

Among these papers, only Syverson (2004b) restricts the sample to homogeneous-output industries.
So, some of the variation in quantity total factor productivity in Eslava et al. (2004, 2013) will be a result
of differences in output or input quality.
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more efficient producers. Foster et al. (2008) carefully argue that (conventional)
revenue-based productivity measures understate the importance of reallocation and
firm turnover to industry productivity growth: Since entrants charge exceptionally
low prices, measures that embody output price differences will understate entrants’
productivity advantages. In Foster et al. (2008), as well as other papers that study
reallocation and industry productivity growth, all plants in an industry are assumed
to pay the same prices for their intermediate inputs. By considering the differences—
across entrants, incumbents, exiting plants, and survivors—in plants’ materials prices,
the current paper provides a more complete depiction of the contribution of turnover
to aggregate productivity growth.

The current paper also relates to and complements Kugler and Verhoogen (2012)
and Manova and Zhang (2012). In these papers, plants’ input/output prices proxy for the
quality of the products that the plants use and produce. Kugler and Verhoogen construct
a model in which input quality and plant technical efficiency are complementary
in production. As a result, the authors are able to explain the observed positive
relationships between a plant’s size and the prices of its inputs and outputs. Manova
and Zhang document that exporters sell their products at higher prices in markets that
are larger, richer, more distant, and less remote. The authors argue that exporters vary
the quality of their goods across the markets to which they export. Unlike these papers,
I focus on industries with insubstantial quality variation, with the goal of isolating
other sources of materials price variation.

By exploiting plant-level materials price—and output price—data, I am able
compare the following three productivity measures: Revenue total factor productivity
(TFPR) is computed using industry-level price indices for both plants’ outputs and
intermediate inputs. Quantity productivity (TPFQ) again uses industry-level price
indices for intermediate inputs, but relies on plant-level output prices. Finally, technical
efficiency (which I denote ˆ) uses both plant-level materials and output prices.

Comparisons of the three productivity measures, as provided in this paper, are
of interest for the following two reasons. First, differences across the productivity
measures highlight the relevance of different models of heterogeneous-plant industry
dynamics. If dispersion in (commonly-used) revenue productivity is mostly driven
by technical efficiency, models examining learning-by-doing, innovation, and
management practices may be particularly relevant. However, if differences in
productivity measures derive from (input or output) price dispersion, models of market
structure would be more salient.

Second, the different productivity measures may be more or less germane to diffe-
rent applications. Under some conditions, for example, the dispersion of revenue prod-
uctivity is a sufficient statistic for the welfare costs of barriers to reallocation; see
Hsieh and Klenow (2009). However, the distribution of technical efficiency may better
summarize how far along an industry is in the adoption of a new technology.3

3. To give an example, Collard-Wexler and De Loecker (2013) examine the distribution of technical
efficiency in their chronicle of minimills’ displacement of vertically integrated producers in the US steel
industry.
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In Section 2, I introduce the two plant-level datasets—the Census of Manufacturers
and the Commodity Flow Survey—employed in this paper, as well as the set of
industries that comprise my sample. Building on Foster, Haltiwanger, and Syverson
(2008), I restrict my sample to the few industries—such as gasoline, ready-mix
concrete, and corrugated boxes—for which plants’ output prices and materials prices
can be computed and meaningfully compared across establishments, and for which
prices do not primarily reflect differences in input or output quality.

Price variation in factor and output markets is substantial, even in industries that
produce commodity-like products. In the benchmark sample, the within-product-
year standard deviation of the logarithm of materials prices is 12%: I establish in
Section 3.1 that TFPQ is negatively related to materials prices: the correlation between
the logarithm of TFPQ and materials prices is �37%. In Section 3.2, I compute
the fraction of TFPQ dispersion that is due to differences in materials prices: the
standard deviation would be 7% lower, and the 75/25 ratio would be 10% lower, in
a counterfactual world in which all plants face the same materials prices. To give
context, 7% to 10% is larger than the fraction of productivity dispersion explained by
the competitive environment (Syverson 2004b), and at least as large as the fraction
explained by differences in labor quality (Fox and Smeets 2011).

As I demonstrate in Sections 3.3 and 3.4, plant-level intermediate input prices
are persistent, spatially correlated, and related to the probability of exit from the
industry. The one-year autocorrelation of the logarithm of plants’ materials prices
is 80%, comparable to the autocorrelation of the logarithms of TFPR, TFPQ, or
output prices. In addition, intermediate input prices are 1:4% higher for plants that are
about to exit. Following from the negative correlations between quantity productivity
and input/output prices, the productivity advantage of surviving plants (compared to
exiting plants) is highest when using TPFQ, and lower when using either TFPR or ˆ,
as the productivity measure. Concomitantly, the contribution of net entry to aggregate
productivity growth is smaller for productivity measures that embody plants’ output
prices (i.e., TFPR, but not TFPQ or ˆ), but larger for productivity measures that
embody input prices (i.e., TFPR and TFPQ, but not ˆ).

In Section 4, I offer three potential explanations for within-industry differences in
materials prices. First, plants in particular geographic regions enjoy particularly low
input prices due, for example, to the abundance of primary materials with which the
intermediate input is produced. Second, plants pay relatively little for their intermediate
inputs when their suppliers are exceptionally productive: productive upstream plants
pass some of their low marginal costs through to their buyers. Also, even after
accounting for transportation costs, suppliers tend to charge different prices for their
outputs across different destinations. These within-supplier differences are a third
source of price variation in intermediate goods markets. For a pooled sample of
ready-mix concrete and corrugated box manufacturers, these three sources reduce the
unexplained materials price variation by 15%. Both the across-supplier component (i.e.,
low marginal cost suppliers charge, on average, low prices) and the within-supplier
component (i.e., a given supplier charges different prices to different downstream
plants) are important factors for explaining the variation in materials prices.
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Section 5 concludes. Two robustness checks, discussing the potential confounding
effects of output quality variation (Appendix A.1) and input quality variation
(Appendix A.2) are included in the Appendix.

Additional robustness checks (Appendices A.3–A.13), a more detailed description
of the construction of the sample (Appendix B), and bootstrapped confidence intervals
(Appendix C) can be found in the Online Appendix.

2. Data and Definitions

The purpose of this section is to introduce the data sources, data sample, and price and
productivity measures that will be used in the remainder of the paper. I describe the
Census of Manufacturers and the Commodity Flow Survey in Section 2.1, and then
the benchmark sample in Section 2.2. I define plants’ materials prices, output prices,
and productivities in Sections 2.3 and 2.4, and finally, in Section 2.5, I briefly discuss
the relationships among these price and productivity measures.

2.1. Data Sources

The main data sources are the Commodity Flow Survey and the Census of
Manufacturers, both of which are collected and maintained by the US Census Bureau.

The Census of Manufacturers contains information on manufacturing establish-
ments’ productive characteristics: employment of production and nonproduction
workers, measured in hours; the book value of building and machine capital; and
expenditures on electricity. Of particular importance for the current paper, for certain
industries, establishments with five or more employees list both the quantity and the
value of each of the products they produce (at the seven-digit level), and the quantity
and value of each of the materials they consume (at the six-digit level).4 The Census
of Manufacturers is conducted every five years, in years ending in “2” or “7”. For this
paper, I use the Census of Manufacturers from 1972 to 1997.

The Commodity Flow Survey allows me to impute buyer–supplier relationships,
as I do in Section 4.1. Like the Census of Manufacturers, the Commodity Flow Survey
is conducted every five years, in years ending in “2” or “7”, although it did not
begin until 1993. Surveyed establishments are asked to list 20–40 shipments that they
make each quarter.5 Each observation includes information on: the weight and value
of the shipment; a five-digit code, specifying the commodity that was shipped; the
method of transport (air, truck, rail, courier service, and so forth); the destination zip

4. To give the reader an idea of the scope of a seven-digit product, ready-mix concrete (3273000) is
one of the larger product groups, while one of the smaller product groups is self-rising family white flour
(2044126). For 1992, http://www.census.gov/prod/2/manmin/mc92-r-1.pdf contains a description of the
product codes.

5. In 1993, approximately 60,000 (out of the 350,000 existing manufacturing plants) were surveyed in
the Commodity Flow Survey, while in 1997 approximately 30,000 plants were surveyed.
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code;6 and the identity of the sending establishment. Unfortunately, the identity of the
receiving establishment is not recorded, meaning that buyers and suppliers cannot be
linked directly; I describe, in Section 4.1, the algorithm used to impute the buyer of
each shipment. In Section 4, I employ the 1993 and 1997 Commodity Flow Surveys.

2.2. Sample

Similar to Roberts and Supina (1996, 2000) and Foster, Haltiwanger, and Syverson
(2008), the analysis centers around industries for which outputs and inputs are relatively
homogeneous. In industries with heterogeneous inputs or outputs, differences in quality
may be a primary source of the variation in the prices that different firms charge. I
would like, as much as possible, to rule out quality as a source of input or output
price variation. An additional restriction is that both the inputs and outputs should be
measured in units that are comparable across establishments.7

The ten industries (alternatively referred to as “products”) that comprise the main
sample are corrugated boxes (with the years 1972–1987 and 1992–1997 analyzed
separately), ground coffee, ready-mix concrete, white wheat flour, gasoline, bulk milk,
packaged milk, raw cane sugar, and carded cotton yarn; see Table 1.8,9 Approximately
one-third of the 10,503 plant-year observations are from plants that manufacture ready-
mix concrete. However, when observations are weighed by their real revenues, the
gasoline industry is the most prominent: Approximately three-quarters of the total
revenues are earned by plants from this industry.

To be in the benchmark sample, the manufacturers must also fill out the materials
and production supplements. These supplemental forms, which the Census sends out
to larger establishments, are necessary to compute the unit values of manufacturers’
outputs and materials purchases.

Thus, there are two sources of sample selection. First, I have chosen industries
based on the characteristics of the outputs produced and inputs purchased. These
industries tend to use materials particularly intensely. Since the scope for price
differences to cause measured productivity dispersion increases with the intensity

6. There are roughly 45,000 zip codes in the United States, meaning that the average zip code contains
approximately eight manufacturing plants.

7. This second restriction rules out industries like oak, hardwood rough lumber (seven-digit product
code D 2421163). For this industry, output is measured in units of board feet, but different plants
manufacture lumber with different thickness. For this reason, it is difficult to compare different plants’
output prices, productivities, or other plant-level characteristics.

8. A problem similar to the one described in footnote 7 exists for the post-1992 corrugated-box industry.
Beginning in 1992, the units of output switch from thousands of pounds to thousands of square feet. I
detail my response to this potential problem in Online Appendix B.1.

9. Corrugated boxes, raw cane sugar, gasoline, ground coffee, and ready-mix concrete are included in
both the current paper and Foster, Haltiwanger, and Syverson (2008). I could not include carbon black,
block ice, or processed ice, as there were insufficiently many plants that filled out both the production and
materials supplements. I do not include hardwood flooring or plywood, the last two industries that Foster,
Haltiwanger, and Syverson (2008) include. Large output price dispersions seem to indicate that the outputs
of these industries are not sufficiently homogeneous.
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TABLE 1. Description of the ten industries in the benchmark sample.

Sample Units of output Material inputs N

Boxes, year�1987 Short tons Paper/paperboard (90%) 1,820
Boxes, year�1992 Square feet Paper/paperboard (89%) 646
Ground coffee 1,000 pounds Green coffee beans (80%) 300

Cement (53%)
Ready-mix concrete 1,000 cubic yards Sand/gravel (28%) 3708
White wheat flour 50-pound sacks Wheat (90%) 503
Gasoline 1,000 barrels Crude petroleum (84%) 692

Unprocessed
Milk, bulk 1,000 pounds whole milk (88%) 127

Unprocessed
Milk, packaged 1,000 quarts whole milk (72%) 2,099
Raw cane sugar Short tons Sugar cane (93%) 177

Cotton fibers (80%)
Carded cotton yarn 1,000 pounds Polyester tow (10%) 431
Pooled – – 10,503

Notes: The percentages that appear in the “Material inputs” column are the fraction of materials expenditures that
go to each particular material input. The “Material inputs” column shows the inputs that represent greater than
6% of the average plant’s total material purchases.

of intermediate input usage (see equation (8)), it is likely that the decline in total factor
productivity dispersion is larger for the ten industries in my sample than for the broader
manufacturing sector.

Second, the plants in the benchmark sample tend to be larger, relative to the
other plants from their respective industries. The average plant in my sample employs
roughly five times more employees and has revenues that are four times larger than the
average plant in their respective industry. (For more details, see Online Appendix B.1.)
Since the probability of exit tends to decrease with size, the plants in my benchmark
sample are relatively more likely to survive: Plants in the benchmark sample have a
five-year survival rate of 86%, compared to the average survival rate for plants in their
corresponding four-digit Standard Industrial Classification (SIC) industries, 72%.

These sample selection issues limit the generalizability of the results given in
Sections 3 and 4. However, by sacrificing generality, I am able to isolate the effect of
differences in materials prices on intra-industry productivity dispersion.

2.3. Assumptions

I make five assumptions regarding plants’ production technologies and the way in
which intermediate inputs, labor, capital, and electricity are supplied. The aim of these
assumptions is to highlight the importance of price dispersion in the measurement
of plant-level productivities. Towards this goal, I will, as much as possible, adhere
to conventional assumptions made in the literature on plant-level production function
estimation. The key assumption that I will relax is that all plants within an industry pay
the same unit price for their intermediate inputs. Relaxing this assumption potentially



582 Journal of the European Economic Association

has a significant effect on productivity measurement, as intermediate inputs represent
roughly 60% of input expenditures in the median manufacturing industry.

ASSUMPTION 1. Plants within an industry have constant-returns-to-scale Cobb–
Douglas production functions, with labor, capital, electricity, and materials as the
inputs. Furthermore, factor shares are common across all plants within an industry-
year combination.

There are three components to the first assumption: a unitary elasticity of
substitution, common factor shares within an industry, and constant returns to scale. The
unitary elasticity of substitution is common in studies of plants’ production functions,
mainly for convenience. However, several authors have estimated an elasticity of
substitution between labor and capital that is less than 1 (e.g., Raval 2011). For the
objects of interest, the Cobb–Douglas assumption seems to have little effect on the
dispersion of measured productivity. I show, in Online Appendix A.3, that the results
of Section 3 are robust to complementarities among material inputs and other inputs.

The other parts of Assumption 1 are also rather innocuous. In Syverson (2004a),
the relationships between within-industry productivity dispersion and other industry
characteristics are robust to using plant-specific factor shares when estimating plants’
TFPs. Related to the constant-returns-to-scale component of Assumption 1, Syverson
(2004b) estimates that the returns to scale are indistinguishable from 1 for plants in the
ready-mix concrete industry, the industry that contains roughly one-third of the plants
in my sample.10

ASSUMPTION 2. The unit input costs of capital, labor, and electricity are the same
for all plants within an industry-year combination. In addition, the unit prices of all
inputs are constant in the amount purchased.

Data limitations necessitate the assumption that all plants face the same costs for a
unit of capital services. The assumption that electricity costs are the same across plants
within an industry can be relaxed, without changing any of the results of Section 3.11,12

10. Baily, Hulten, and Campbell (1992) estimate returns to scale for a broader set of industries and find
the same result.

11. Davis, Grim, and Haltiwanger (2008) compute plant-level energy prices and show that there is
substantial variation, within industries, in the cost of a kilowatt-hour of electricity. In an unreported
robustness exercise, I check that the results of Section 3 are virtually identical after relaxing the assumption
that all plants face the same electricity prices, the reason being that the expenditure share of energy is small
(on average, 2:5%) for plants in the benchmark sample.

12. Differences in labor quality, across plants, may muddle the interpretation of plants’ productivities.
Using hours worked as the measure of labor means that plants with exceptionally skilled workers would
appear to be highly productive. If workers’ wages reflect differences in skill (as opposed to, for example,
workers’ bargaining power), it would be preferable to measure labor inputs by the wages paid by each
plant. In an unreported robustness check, I reproduce Tables 2 and 3 using the wage bill, instead of hours
worked, as the measure of labor inputs. The results are virtually identical when using this different measure
of labor inputs.
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Assumptions 3–5 deal with the fact that plants may produce multiple outputs and
purchase multiple intermediate inputs.

ASSUMPTION 3. The fraction of each input employed in producing a particular
product equals the plant’s share of revenue coming from that product.

The need for Assumption 3, an assumption also made by Foster, Haltiwanger, and
Syverson (2008), stems from a limitation of the dataset. In particular, for plants that
produce multiple goods, it is impossible to know exactly how much of each input is
used in the production of each output. I make the simplest possible assumption, and
assume that each input is allocated in proportion to the plant’s sales of each product.
For example, for a hypothetical plant that employs L units of labor and sells Yg
dollars of good g; for g 2 f1; : : : ; Gg; the amount of labor used in the production of
g is

L
YgPG

OgD1 Y Og
: (1)

Similar to Foster et al., I argue that the dispersion of productivity is robust to the way
in which inputs are allocated to outputs, mainly because the plants in my sample tend
to be heavily specialized in the goods they manufacture.

In addition to Assumptions 1–3, which are common in papers that estimate plant-
level productivities, I make two assumptions on the substitutability among different
material inputs. Together, Assumptions 4 and 5 will allow me to compute plant-
specific materials prices from the data at hand. While restrictive, they are much less
so than the common assumption that all plants face the same intermediate input
prices.

ASSUMPTION 4. If multiple intermediate inputs are observed, the elasticity of
substitution between the materials is 0.

This assumption is pertinent only for the two industries, plants producing
ready-mix concrete or yarn, for which I observe multiple material inputs being
employed. I show, in Online Appendix A.4, that the level of productivity dispersion
is extremely robust to moderate levels of substitutability among the different material
inputs.

ASSUMPTION 5. The elasticity of substitution, between plants’ “priced” and
“nonpriced” materials is 1. In addition, the elasticity of substitution between
“nonpriced” materials and capital, labor, and electricity is also 1.

Here, “priced materials” are the materials that most plants in the industry purchase.
For instance, in the case of yarn manufacturers, cotton fibers and polyester tow are the
“priced materials”. The nonpriced materials are purchased by only a few plants in the
industry. Again, turning to the yarn industry, approximately 10% of the expenditures
on intermediate inputs go to purchases of materials other than cotton fibers (see the
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“Material inputs” column of Table 1). Some of these yarn-producing plants purchase
silk fibers; others purchase nylon tow. Since only a few plants purchase these materials,
it is difficult to ascertain if plants are purchasing these inputs relatively cheaply or
expensively. I treat the “nonpriced” materials as if they were any other input for which
I do not observe unit prices, such as capital, and assume that there is a unitary elasticity
of substitution between “nonpriced” materials and “priced” materials, labor, capital,
and electricity.

2.4. Definitions

In this section, I define plants’ materials and output prices, as well as the three plant-
level productivity measures: TFPQ, TFPR, andˆ. The first two productivity measures
are exactly as in Foster, Haltiwanger, and Syverson (2008). The productivity measure
that is new to this paper, ˆ, aims to isolate plants’ abilities to transform inputs into
outputs. In particular, ˆ should not reflect plants’ abilities to sell their output at a
relatively high price, or to purchase their intermediate inputs at a relatively low price.

I begin by defining plants’ input and output prices. The price P out
ijt that plant i

charges for product j in year t is simply the ratio of revenues Yijt to physical quantity
shipped Qijt:

P out
ijt � Yijt

Qijt

: (2)

Before defining plant-level input prices, I introduce some notation. LetMijt be the
expenditure on materials of plant i in the production of product j in year t . Plant i ’s
purchases consist of “nonpriced” materials, which I denote using M 0

ijt; and “priced”
materials, which I denote using M 1

ijt (and M 2
ijt if j is produced using two material

inputs). Let s�jt denote the average fraction—across plants in my sample in industry
j and year t—of materials expenditures that is spent on material �.13 Finally, let Sjt
denote the average fraction of materials expenditures, in industry j and year t; that go
to “priced” materials.14

For plants in industries that use only one type of “priced” material (i.e., all
industries except for ready-mix concrete and yarn), the input price equals the ratio of
materials expenditures (M 1

ijt) to the physical quantity consumed (N 1
ijt) of the lone priced

material:

P in
ijt � M 1

ijt

N 1
ijt

: (3)

13. For example, for j D concrete and � D cement, s�

jt would be approximately 0:53, with slight
variation across years.

14. Continuing with the example from the previous footnote, S
jt

would be approximately 0:81
(D 0:28C 0:53) for ready-mix concrete manufacturers.
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To construct plant-level materials prices for ready-mix concrete and yarn
manufacturers, I begin by defining a unit of the intermediate input bundle as follows:

Nijt � min

(
N 1

ijt

NN 1
jt

�
 
s1jt

Sjt

!
;
N 2

ijt

NN 2
jt

�
 
s2jt

Sjt

!)

D lim
%!0

0
@ s1jt

Sjt

! 1
% N 1

ijt

NN 1
jt

! %�1
%

C s2jt

Sjt

! 1
% N 2

ijt

NN 2
jt

! %�1
%

1
A

%
%�1

: (4)

In equation (4), Nijt is the number of units of the intermediate input bundle
purchased by plant i in industry j and year t . Because the units ofNijt have no natural
interpretation, it is necessary to normalize by the average input utilization of each of
the intermediate goods, NN 1

jt and NN 2
jt , in the given industry-year.15 Assumption 4 pins

down how the two different materials are combined to form the composite intermediate
input; relaxing Assumption 4 would involve allowing % > 0.

Let P in
1ijt and P in

2ijt be the price that plant i of industry j pays for materials 1

and 2 in year t , and let NP in
1jt and NP in

2jt be the corresponding industry-year averages.
Then, the materials bundle’s ideal price index equals the value-weighted average of
the individual inputs’ prices:

P in
ijt � s1jt

Sjt

P in
1ijt

NP in
1jt

C s2jt

Sjt

P in
2ijt

NP in
2jt

: (5)

Having defined plant-level materials and output prices, I can now compute plant-
level productivities. For each plant, i , producing in industry j and year t , define its
total factor productivity quantity (TFPQ) as the ratio between the physical quantity it
produces and the inputs it utilizes in the production of this product:16

TFPQijt � Qijt

�
Lijt

���jt
�
Kijt

���jt
�
Eijt

���jt
�
Mijt

���jt
: (6)

In equation (6), Lijt, Kijt, and Eijt denote the amount of labor, capital, and energy
used in the production of product j . As in Foster, Haltiwanger, and Syverson (2008),

15. Klump, McAdam, and William (2012) comprises a discussion of the necessity of normalizing CES
production functions when % ¤ 1. (When % D 1; the units can be factored out into a multiplicative
constant.)

16. Ideally, I would compare the estimates generated by equations (6)–(8) to those computed using
other estimation methodologies. Unfortunately, like Foster, Haltiwanger, and Syverson (2008), I am unable
to compute plant-level productivities using the methods outlined in Olley and Pakes (1996), Blundell
and Bond (2000), and Ackerberg, Caves, and Frazer (2006). These methods generally require annual
observations, while information on quantities of output produced or intermediate inputs purchased exist
only for years in which the Census of Manufacturers is conducted. Most likely, my results would not
change if other productivity measures were used. Van Biesebroeck (2008) reports that, unlike estimates of
input elasticities, which are sensitive to the estimation methodology, plant-level productivity estimates are
highly correlated across different estimation methodologies.

In Online Appendix A.5, I re-estimate plants’ productivities, using the index number approach outlined
in Caves, Christensen, and Diewert (1982). The main results of Section 3 are essentially unchanged.
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labor is stated in terms of hours, and capital is computed by summing plants’ reported
book values of equipment and structures. Note that, because of Assumption 1, the
factor elasticities, �jt, �jt, �jt and �jt; are the same for all plants within an industry-
year pair. In addition, �jt C �jt C �jt C �jt D 1 for all j; t pairs. To emphasize, since
Mijt D P in

ijtNijt, low materials prices are associated with high TFPQijt.
The industry-year specific cost shares in equation (6) are computed as in Foster,

Haltiwanger, and Syverson (2008): I use industry-year level cost shares from the NBER
Productivity database as estimates of the production function factor shares. Capital ser-
vice expenditures are set equal to the value of the stock of capital multiplied by capital
rental rates (from unpublished data constructed by the Bureau of Labor Statistics).

Revenue total factor productivity (TFPR) captures a plant’s ability to transform
a given bundle of inputs into revenue. As equation (7) makes clear, plants will have
a high TFPR for one of two reasons: Either they have high TFPQ, or they sell their
output at a particularly high price:

TFPRijt � Yijt

�
Lijt

���jt
�
Kijt

���jt
�
Eijt

���jt
�
Mijt

���jt
(7)

D TFPQijtP
out
ijt :

Finally, when computing plants’ technical efficiencies (ˆijt), I purge the materials
price from measured productivity:

ˆijt � Qijt

�
Lijt

���jt
�
Kijt

���jt
�
Eijt

���jt �
M 0

ijt

���jt.1�Sjt/
�
Nijt

���jtSjt
(8)

D Qijt

�
Lijt

���jt
�
Kijt

���jt
�
Eijt

���jt
�
Mijt

���jt �
P in

ijt

��jtSjt

D TFPQijt

�
P in

ijt

��jtSjt :

The equality of the first and second lines of equation (8) follows from Assumption 5,
namely the unitary elasticity of substitution between “priced” and “nonpriced”
materials. The equality of the second and third lines follows from the definition of
TFPQ. Equation (8) states that plants will have high TFPQijt for one of two reasons:
either the plant is technically efficient (ˆijt is large), or materials prices are low (P in

ijt

is low).17,18

17. Of course, there may be within-industry differences in the factor market conditions for labor, capital,
and electricity. Because of Assumption 2, these differences would be incorrectly labeled as differences in
technical efficiencies.

18. To the extent that plants invest in finding suppliers that will charge a low price, stripping out
materials price variation may do more harm than good. Following Foster, Haltiwanger, and Syverson
(2008), I examine the relationship between plants’ input prices and the share of workers that are not
engaged in actual production. These workers are, potentially, the ones that are searching for new, low-cost
suppliers. If this hypothesis is correct, plants that have a higher share of nonproduction workers will have
lower-than-average materials prices. In the data, this turns out not to be the case. The correlation between
a plant’s (log) non-production worker share and its pin equals �0:00. Foster, Haltiwanger, and Syverson
document a similar result: A higher nonproduction worker share is very weakly positively correlated with
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TABLE 2. Correlations and standard deviations of plant-level characteristics.

pin pout tfpq ' tfpr

pout 0.231��
tfpq –0.369�� –0.551��
' 0.127�� –0.469�� 0.873��
tfpr –0.232�� 0.219�� 0.616�� 0.694��
Std. dev. 0.117 0.119 0.161 0.151 0.137

Notes: Observations are weighed by plants’ real revenues. Correlations for each of the ten industries are presented
in Online Appendix A.6, while correlations that give plant-year observations equal weight are given in Online
Appendix A.8.N D 10,503.
��Correlation is significantly different from 0 at the 5% level (see Online Appendix C for details).

Note that Assumptions 1 and 2 imply that TFPQ is inversely proportional to
marginal costs.19 Given this, I will use the terms “low quantity productivity” and “high
marginal cost” interchangeably.

So that I can compare observations across industries and years, all quantities will be
stated relative to the mean for that industry-year. I use lower-case letters to denote the
percentage deviation of a variable from its industry-year average. For any plant-level
statistic Xijt define

xijt � log.Xijt/ �
P
kWk2i’s industry in year t logXkjt

kfk W k 2 i ’s industry in year tgk (9)

2.5. Relationships Between Prices and Productivity Measures

Before proceeding to the empirical analysis, I provide expressions for the relationships
among the different productivity measures and plant-level prices.20 I will take 'ijt and
pin

ijt as given and use equations (6)–(9) to characterize the signs of the relationships
between the plant-level productivity measures and input prices. In general, 'ijt and
pin

ijt emerge from the interactions between plant i ’s choices (on how much to produce,
how much of each input to purchase, how much effort to spend searching for low-cost
inputs, etc.) and conditions in factor and output markets. For this discussion, it suffices
to leave these decisions and interactions unmodeled.

In this section, I assume that Cov.'; pin/ � 0. That is, in the observed sample,
there is no relationship between plants’ technical efficiencies and the prices at which
they purchase intermediate inputs. As Table 2 will demonstrate, there is actually a weak

higher output prices. While this is a crude calculation, it suggests that plants’ investments are not a driving
source of materials price variation.

19. Solving the cost minimization problem of a plant with a constant-returns Cobb–Douglas production
technology yields the following expression for its marginal cost: MC

ijt
/.ˆ

ijt
/�1.Pin

ijt/
�

jt
S

jt D TFPQ�1.
The constant of proportionality is a function of the industry-year specific unit costs of labor, capital, and
electricity.

20. The exposition of this section is due, in large part, to an anonymous referee, to whom I am deeply
grateful.
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positive relationship between materials prices and technical efficiencies. Ignoring this
positive relationship, for the moment, yields simple expressions for the relationships
of interest. In conjunction with the definitions given in equations (6)–(9), this section’s
assumption yields

Cov.tfpq; '/ D Var.'/ > 0 (10)

Cov.tfpq; pin/ D ��SVar.pin/ < 0 (11)

Var.tfpq/ � Var.'/ D .�S/2 Var.pin/ > 0: (12)

Equation (10) states that plants with high technical efficiencies also have higher-
than-average quantity productivities. Moreover, plants that purchase their inputs
cheaply have high tfpq’s (low marginal costs). Finally, tfpq is more dispersed than
'. To provide some intuition for the sign of equation (12), notice that tfpq is the
difference of ' and pin. As long as the relationship between technical efficiency and
input prices is not too strong, which, for now I am assuming, the variance of tfpq will
have to be larger than the variance of '.

There are other relationships of interest, among plants’ output prices, revenue
productivities, and quantity productivities. A simple model generating predictions over
these relationships can be found in Foster, Haltiwanger, and Syverson (2008). Their
set-up yields the following predictions: Plants with low marginal costs (high tfpq) will
have higher-than-average markups, but lower-than-average output prices. Thus, pout

will be positively correlated with tfpr, but negatively correlated with tfpq. I check these
predictions, in addition to the more novel predictions given in equations (10)–(12), in
the following section.

3. Implications of Materials Price Dispersion

In this section, I explore some of the implications of price dispersion in intermediate
input markets. In Section 3.1, I document that materials price dispersion is substantial
and provide correlations among plant-level statistics. In Section 3.2, I estimate that 7%
to 10% of the variation in tfpq is attributable to differences in the materials prices that
plants face. In Section 3.3, I argue that the price that plants face when purchasing their
materials is persistent across time and correlated across space. In Section 3.4, I show
that materials prices are higher for plants that are about to exit. Finally, in Section 3.5,
I compute the contribution, towards aggregate productivity growth, of the entry of
relatively productive plants and the exit of relatively unproductive plants.

3.1. Descriptive Statistics

Table 2 contains summary statistics for the plant-level productivities and input/output
prices. All plant-level variables are de-meaned by industry-year according to
equation (9).
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The first takeaway from Table 2 is that within-industry price dispersion is
substantial. For the benchmark sample which, again, consists of plants that produce
commodity-like products, the within-industry standard deviations of plant-level
materials and output prices are approximately 12%. These dispersions are of similar
magnitude to the within-industry variation in plant productivities.

What is more, the observed correlations in Table 2 match the predictions made
in Section 2.5. The correlation coefficients between tfpq; tfpr, and pout are similar to
those computed in Foster, Haltiwanger, and Syverson (2008). Plants with higher tfpq
pass on some of their lower marginal costs to their consumers (generating a low pout).
In addition, tfpq and tfpr are positively correlated, as are tfpr and pout.

The variables that are new to this study are ' and pin, log technical efficiencies and
log materials prices. First, plant-level materials prices, pin, are negatively correlated
with tfpq and tfpr. Plants that purchase inputs cheaply appear to be more productive
according to the conventional measures. At the same time, tfpq and ' are highly
correlated with one another, while the correlation between ' and tfpr is similar to the
correlation between tfpr and tfpq.

Materials prices are positively correlated with output prices and technical
efficiencies. There are several possible explanations for these positive relationships.
First, the correlations may reflect any differences in input and output quality that
still remain (despite my best efforts to choose a sample of industries with outputs
and material inputs that are comparable across plants). If (a) inputs vary in quality,
(b) these quality differences are reflected by differences in materials prices, and (c)
high-quality inputs allow a plant to produce more units of a given product using a
given bundle of inputs (measured in physical units), then we will observe a positive
correlation between ' and pin. Quality variation may also explain why pout and pin

are correlated with one another, to the extent that inputs vary considerably in quality
and consumers value products that are produced using high-quality material inputs.

A second possible explanation is that a selection mechanism, one on plant survival,
may be causing us to observe a positive relationship between pout/' and pin: If plants’
survival depends on their profitability being above some cutoff, plants will be able to
tolerate poor conditions in input markets if they are able to sell their output expensively
or if they are particularly technically efficient.

Finally, independent of quality differences or selection, the positive correlation
between input and output prices may be due to imperfections in output markets, where
high materials prices can at least partially be passed through to the establishments’
customers.

3.2. Implications for Productivity Dispersion

In this section, I compare the dispersions of the distributions of tfpq and '. In so
doing, I provide a measure of the fraction of tfpq dispersion that can be explained by
differences in intermediate input prices. The main finding, that the dispersion of tfpq
exceeds the dispersion of ', is the prediction of equation (12).
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Pooling across the ten industries in the sample, the standard deviation of ' is 16:3%�D e0:151
�
, while the standard deviation of tfpq is 17:5%, which is 7% larger than the

standard deviation of ': So, by eliminating the effect of differences in materials prices,
the observed distribution of productivities would be approximately 7% lower; the 95%
confidence interval of the difference between the standard deviations of tfpq and '
is Œ0:2%; 10:4%�. Table 3 includes two other measures of dispersion, the 90/10 ratio
and the 75/25 ratio. The difference between the dispersions of tfpq and ' is somewhat
greater with these two alternate measures: 9% for the 90/10 ratio and 10% for the
75/25 ratio.

The difference between tfpq and ' varies across industries, particularly for the
industries with small sample sizes. For coffee, tfpq is 17% to 30%more dispersed than
', while ' actually displays more dispersion than tfpq for the smallest-sample industry,
raw cane sugar.

Even though I have chosen industries based on the homogeneity of the inputs and
outputs, it is likely that at least some of the variation in materials and output prices is
due to differences in quality. Variation in input/output quality attenuates the negative
correlation between tfpq and pin (see Appendices A.1 and A.2, where I study samples
with more pronounced input/output quality variation). High-quality material inputs, for
example, will allow establishments to produce and sell more using a given measured
quantity of material inputs. To the extent that high-quality intermediate inputs are
purchased at higher unit prices, this will induce a positive relationship between ' and
pin. As a result, then, within-industry variation in quality will lead to a downward bias
in the measured difference between the dispersion of tfpq and the dispersion of '.21

In other words, the 7% to 10% decline in dispersion most likely under-represents the
actual fraction of tfpq dispersion that is due to differences in materials prices.

Measurement error has the potential to bias the correlations given in Table 2 and
the dispersions given in Tables 3 and 4. Because P in

ijt is constructed by taking the ratio
ofMijt andNijt, any measurement error inNijt will induce spurious positive correlation
between pin and '. Similarly, because plant-specific output prices (P out

ijt ) are computed
by taking the ratio of revenues (Yijt) to quantities produced (Qijt), measurement error
in Qijt will tend to engender negative correlations between pout and tfpq/'. In turn,
measurement error in Nijt and Qijt has the potential to bias the dispersions of tfpq and
'. I explore the magnitude of these biases in Online Appendix A.7. The main takeaway
from Online Appendix A.7 is that measurement error will also lead me to understate
the difference between the dispersion of tfpq and the dispersion of '.

With these caveats in mind, I now relate the 7% to 10% decline in dispersion
to dispersion declines reported in two other papers. First, Syverson (2004b)
hypothesizes that, in markets for which competitive forces are exceptionally strong,
low-productivity plants are more likely to exit the industry, in turn leading
to a more compressed productivity distribution. Within the ready-mix concrete
industry, Syverson characterizes areas with high densities of construction activity

21. Since Var.tfpq/ D Var.'/C .�S/2Var.pin/� 2�SCov.';pin/; any positive correlation between
' and pin will lead to a decline in the dispersion of tfpq relative to that of '.
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TABLE 3. Dispersion of tfpq and '.

Dispersion of tfpq Dispersion of ' Percentage decrease

Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD

Boxes, year�1987 0.380 0.179 0.168 0.366 0.177 0.166 3.7%�� 1.0% 1.6%
Boxes, year�1992 0.566 0.293 0.225 0.526 0.276 0.211 7.9%�� 6.2%�� 6.7%��
Coffee 0.709 0.326 0.266 0.562 0.277 0.229 30.1%�� 19.5%�� 17.4%��
Concrete 0.521 0.251 0.224 0.486 0.236 0.215 7.4%�� 6.6%�� 4.4%��
Flour 0.360 0.190 0.142 0.349 0.158 0.148 3.2% 23.2%�� –4.1%
Gasoline 0.300 0.145 0.132 0.280 0.133 0.122 7.6% 9.5% 8.1%
Milk, bulk 0.597 0.285 0.252 0.531 0.267 0.229 13.1% 7.2% 10.3%
Milk, packaged 0.535 0.261 0.227 0.502 0.248 0.218 6.7%�� 5.3%�� 4.1%��
Sugar 0.588 0.297 0.280 0.766 0.340 0.319 –20.7% –11.9% –11.5%��
Yarn 0.581 0.275 0.256 0.633 0.310 0.252 –8.0% –10.8% 1.5%
Pooled: weighted 0.351 0.164 0.161 0.324 0.151 0.151 8.8%�� 9.7% 6.9%��
Pooled: unweighted 0.527 0.253 0.227 0.493 0.238 0.219 7.2%�� 6.5%�� 3.9%��

Notes: Except for the final row, observations are weighed by plants’ real revenues. See Online Appendix A.8 for
the unweighted computations, broken out by industry.22

��Significant at 5% (see Online Appendix C for details).

TABLE 4. Dispersion of tfpr and tfpq.

Dispersion of tfpr Dispersion of tfpq Percentage increase

90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD
Revenue-
weighted?

Yes 0.306 0.147 0.137 0.351 0.164 0.161 16.0%�� 12.9% 18.5%��
No 0.380 0.178 0.176 0.527 0.253 0.227 47.3%�� 53.0%�� 33.7%��

Note:N D 10,503.
��Significant at 5% (see Online Appendix C for details).

as highly competitive markets, and finds that this demand density index explains
approximately 2% of the cross-market variation in the dispersion of measured
productivity. In a second example, Fox and Smeets (2011) compute the fraction of
measured productivity dispersion that can be explained by differences in worker quality.
While Fox and Smeets’ application of a value-added production function muddles a
comparison of magnitudes, it is likely that materials price variation is at least as
important—in terms of reducing measured productivity dispersions—as labor-quality
variation.23

22. Due to Census rules regarding data confidentiality, I am prohibited from reporting the actual quantiles
of any empirical distribution. The quantiles (but not the standard deviations, which are not subject to this
regulation) are computed in a two-step process. First, using a kernel density estimator, I produce a
smoothed version of the empirical cumulative distribution function of the variable of interest. I then report
the quantile of this smoothed distribution. The decrease in productivity dispersion—between tfpq and
'—is not substantially affected by this smoothing procedure. I employ the same two-step procedure in the
calculations of Tables 4, A.2, A.5, A.8, and A.15.

23. Within four manufacturing industries, Fox and Smeets (2011) report a 14% decline in the 90/10 ratio
of measured productivities, after including rich controls for worker quality. (The wage bill alone reduces the
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TABLE 5. Persistence of plant-level characteristics.

Revenue-
weighted? tfpq tfpr pout ' pin y q n

ˇ No 0.351�� 0.306�� 0.432�� 0.299�� 0.309�� 0.895�� 0.901�� 0.889��
S.E. No (0.022) (0.024) (0.024) (0.023) (0.025) (0.010) (0.009) (0.010)
ˇ1=5 No 0.811 0.789 0.846 0.786 0.791 0.978 0.979 0.977
ˇ Yes 0.175 0.201 0.305�� 0.185�� 0.326�� 0.868�� 0.868�� 0.885��
S.E. Yes (0.092) (0.106) (0.040) (0.083) (0.047) (0.045) (0.051) (0.028)
ˇ1=5 Yes 0.706 0.726 0.789 0.713 0.799 0.972 0.972 0.976

Note: N D 4,310.
��Significant at 5%.

While price dispersion in intermediate input markets tends to reduce the dispersion
of measured productivity (i.e., the dispersion of tfpq is greater than that of '), price
dispersion in output markets has the opposite effect on the dispersion of measured
productivity (i.e., the dispersion tfpr is smaller than that of tfpq). The latter relationship,
which Foster, Haltiwanger, and Syverson (2008) also document, stems from the
strong negative correlation between pout and tfpq: The standard deviation of revenue
productivity, which is 14:7% in the revenue-weighted calculations, is approximately
19% smaller than the standard deviation of quantity productivity. In this sense, ' and
tfpr are closer to each other than one might presume. The similarity of these two
productivity measures is intuitive; it stems from the positive correlation between input
and output prices. The countervailing effects—as in this case, on the standard deviation
of measured productivity—of factor price dispersion and output price dispersion will
be a recurring finding in the remainder of this section.

3.3. Serial and Spatial Correlation

A long stream of research, beginning with Baily, Hulten, and Campbell (1992), has
documented the persistence of plant-level characteristics. Using regressions of the
form

xi;j;tC5 D ˛ C ˇxijt C "ijt, (13)

Foster, Haltiwanger, and Syverson (2008) compute the one- and five-year
autocorrelation coefficients for different plant-level statistics. They compute that plant-
level productivities and output prices have a one-year autocorrelation coefficient of
approximately 70% to 80%. I replicate these findings in Table 5. The novel components

90/10 ratio by almost as much, 13%.) However, as Gandhi, Navarro, and Rivers (2012, p. 1) argue, value-
added production functions cause one to overstate productivity dispersion and to infer “fundamentally
different patterns of productivity heterogeneity”.

I compute the decline in measured productivity dispersion accrued by replacing hours with wages as
the measure of labor inputs, still using, as I have throughout the paper, a gross output production function.
For the ten industries in my benchmark sample, the 90/10 ratio declines by 2:4% if observations are
revenue weighted, and 6:6% if observations are given equal weight.
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TABLE 6. Spatial correlation of materials prices.

Sample ˇ S.E. Adjusted-R2

Boxes, year�1987 0.884 0.080 0.063
Boxes, year�1992 0.693 0.120 0.048
Coffee 0.051 0.080 –0.002
Concrete 0.913 0.028 0.222
Flour 0.266 0.091 0.015
Gasoline 0.721 0.056 0.193
Milk, bulk 0.139 0.118 0.003
Milk, packaged 0.826 0.041 0.160
Sugar 0.193 0.183 0.001
Yarn –0.377 0.308 0.001
Pooled 0.577 0.016 0.107

Notes: The dependent variable is pin
ijt , and the independent variable is the (revenue-weighted) average of the

pin
i 0jt

for the plants that are within a 250-mile radius of plant i in industry j and year t . Observations are revenue
weighted. See Online Appendix A.8 for the unweighted version of this table.

of Table 5 appear in the final five columns. I find that the persistence of ' is similar
to that of the two other plant-level productivity measures, and that the persistence of
pin is similar to the persistence of pout. Measures of plant size—revenues and physical
quantities of outputs and intermediate inputs—exhibit significantly more persistence
relative to the productivity and price measures.

There are at least three potential explanations as to why materials price variation is
so persistent. A first possibility is that the price variation reflects residual, persistent,
within-industry differences in the quality of plants’ inputs. Again, while this possibility
should not completely be discounted, I have selected industries with little quality
variation to mitigate its role in my analysis. Second, persistence of materials price
variation might result from long-term buyer–supplier relationships, a possibility I
explore in Sections 4.2 and 4.3. A third possibility, which I also revisit in Section 4.2,
is that geographical forces generate persistent within-industry variation in materials
prices.

To examine this final possibility, I measure the extent to which materials prices
are spatially correlated.24 In particular, I run a regression on the benchmark sample
of 10,503 plant-year observations. In this regression, the dependent variable is the
materials price for plant i in year t , pin

ijt. The sole independent variable is the revenue-
weighted average of the materials prices of the other plants that are located within
250 miles of plant i . (I find similar results using a range of alternate cutoffs.)
Table 6 indicates that 11% of materials price variation is explained by the
materials prices of nearby plants. Materials prices for gasoline refiners and concrete
manufacturers exhibit the strongest spatial correlation, while the materials prices of
bulk milk, yarn, coffee, and sugar manufacturers are not spatially correlated.

24. Geographical price variation could potentially reflect differences in demand for high-quality inputs,
across locations. See Appendix A.2 for a discussion of the ready-mix concrete industry, an industry for
which this might be the case.
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TABLE 7. Comparison of plant-level statistics and entry/exit status.

Coefficient Revenue-
on: weighted? tfpq ' tfpr y pin pout

Entry No 0.017�� 0.020�� 0.015�� –0.456�� 0.005 –0.002
Entry No (0.008) (0.007) (0.006) (0.032) (0.006) (0.006)
Entry Yes 0.009 –0.004 –0.005 –0.698�� –0.019 –0.014
Entry Yes (0.025) (0.023) (0.022) (0.092) (0.015) (0.016)
Exit No –0.025�� –0.016�� –0.020�� –0.534�� 0.014�� 0.005
Exit No (0.007) (0.007) (0.006) (0.031) (0.005) (0.006)
Exit Yes –0.051�� –0.042�� –0.039 –0.609�� 0.013 0.012
Exit Yes (0.018) (0.016) (0.020) (0.131) (0.012) (0.012)

Notes: In the first four rows, each cell gives the coefficient estimate, or standard error, of ˇ
1

in equation (14). In
the final four rows, each cell gives the coefficient estimate, or standard error, of ˇ

2
in equation (15).N D 10,503.

��Significant at 5%.

3.4. Characteristics of Entering and Exiting Plants

In this section, I compare the prices and productivity measures of entering plants with
incumbent plants and exiting plants with surviving plants. Table 7 presents the main
results of this section, the results of the regressions defined by equations (14) and
(15):25

xijt D ˛jt C ˇ1I fi 2 plants that enter between years t � 5 and tg C "ijt (14)

xijt D �jt C ˇ2I fi 2 plants that exit between years t and t C 5g C "ijt: (15)

Like Foster, Haltiwanger, and Syverson (2008), I find that entrants/exiting plants are
significantly smaller than the average plant in a given industry-year, and that exiting
plants have significantly lower ', tfpq, and tfpr. The productivity advantage of entrants
(and productivity disadvantage of exiting plants) is larger for quantity productivity
than it is for revenue productivity: Removing the output-price component of revenue
productivity tends to increase the difference between surviving and exiting plants’
productivities.

In addition to these already-known empirical regularities, I find that exiting plants
pay approximately 1:4% (1:3% for the revenue-weighted calculations) more per
unit of the intermediate input than the surviving plants in their industry-year. The
positive relationship between materials prices and the probability of exit reinforces my
assumption of insubstantial quality variation in the benchmark sample: High materials
prices are a burden to bear, not a marker of high-quality type, as in, for example, Kugler
and Verhoogen (2012).

Comparing the first two columns of Table 7, the productivity advantage of surviving
plants is larger for tfpq than it is for ': Removing the materials-price component of

25. To emphasize, exit (and entry) are defined on the basis of true exit and entry from the overall
population of establishments, not simply exit (or entry) from the benchmark sample.
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quantity productivity marginally decreases the measured difference between surviving
and exiting plants’ productivities.

The results in Table 7 indicate that the productivity advantage of entrants (compared
to incumbents) and surviving plants (compared to exiting plants) is highest when
using tfpq as the productivity measure. In other words, controlling for output prices
but not materials prices tends to make entrants (survivors) appear relatively more
productive than incumbents (exiting plants). The next section considers the magnitude
and significance of the differences, across the three productivity measures, of the
contribution of reallocation—via plants’ entry and exit—on industry productivity
growth.

3.5. Decompositions of Industry Productivity Growth

In this section, I compute the fraction of aggregate productivity growth that occurs
via the net entry effect: the exit of relatively unproductive plants and the entry of
relatively productive plants. The extent to which reallocation across plants explains
aggregate productivity growth has been extensively studied (e.g., Baily, Hulten, and
Campbell 1992; Griliches and Regev 1995; Foster, Haltiwanger, and Krizan 2001;
and Foster, Haltiwanger, and Syverson 2008). Of these analyses, I am most closely
following Foster et al. (2008), who compute the net entry effect when either tfpr
or tfpq is used as the measure of plant productivity. Because entrants charge lower
prices than incumbents, the net entry effect is smaller when revenue productivity
measures are used instead of quantity productivity measures. The authors conclude
that, “in terms of understanding the barriers to allocative efficiency . . . revenue based
productivity decompositions may focus too much attention on continuing businesses
and not enough on the role of entering businesses” (p. 419). In what follows, I show
that accounting for materials prices partially reverses this finding.

Like Foster, Haltiwanger, and Syverson (2008), I use the following growth
decomposition, due to Baily, Hulten, and Campbell (1992) and Foster, Haltiwanger,
and Krizan (2001):
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: (16)

where 	it denotes the revenue share of plant i , within its industry, in year t ; tfpt
gives the revenue-weighted average (log) productivity in year t ; � is the difference
operator; and C, N , and X are the sets of continuing, entering, and exiting plants.
The decomposition highlights the different sources of industry productivity growth,
including the Entry Effect, the Exit Effect, and the sum of the two effects (the Net
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TABLE 8. Aggregate productivity growth decompositions.

Productivity
measure Total Entry Exit Net entry Total Entry Exit Net entry

tfpr –1.60 –0.08 0.08 0.00 1.30 0.23 0.12 0.35
tfpq –1.60 –0.06 0.15 0.09 1.30 0.32 0.12 0.44
' –1.60 –0.09 0.13 0.04 1.30 0.25� 0.14 0.39

Notes: All values are given as percentages, over five-year horizons. In the first four columns, industries are assigned
importance according to their total revenues. In the last four columns, industries are assigned importance according
to the number of plants.
�The value is significantly different from the corresponding value that uses tfpq as the measure of plant productivity
(see Online Appendix C for details).

Entry Effect).26 The magnitudes of these three effects will depend on the productivity
measure—either tfpr, tfpq, or '—used in equation (16).

The results of the industry decompositions are given in Table 8. I decompose
the productivity growth—over five-year intervals—separately for each of the ten
industries in the benchmark sample. The values are the averages over these ten
industries. In the first four columns, industries with larger revenues (primarily gasoline
manufacturing) are given more weight while, in the last four columns, industries’
weights are determined by the number of plants in the industry. The main takeaway
from the table is that the Net Entry term is larger for quantity productivity (tfpq) than
it is for either revenue productivity (tfpr) or technical efficiency ('). Consistent with
Foster, Haltiwanger, and Syverson (2008), Table 8 indicates that the contribution of net
entry to aggregate productivity is larger when output prices are accounted for. At the
same time, accounting for materials prices reduces the measured contribution of net
entry to industry productivity growth. These patterns are robust to the decomposition
method and the relative weights given to different industries.27

For completeness’ sake, I assess the statistical significance of the differences,
across the productivity measures, of the importance of the Entry, Exit, or Net Entry
terms. When industries are weighed by the number of plants, the Entry Effect is
significantly greater when '—instead of tfpq—is used as the productivity measure.
Other differences are not statistically significant.

To summarize, the conventional productivity measures, tfpq and tfpr, reflect within-
industry differences in materials prices. Because exiting plants face relatively high

26. Since a large number of plants enter and exit my benchmark sample without actually entering or
exiting their industries, I will be unable to distinguish between the sources of aggregate productivity growth
that are listed in the first line of equation (16).

27. Foster, Haltiwanger, and Syverson (2008) consider a second growth decomposition, due to Griliches
and Regev (1995). I show, in Online Appendix A.9, that this alternate decomposition method yields results
very similar to those presented in Table 8.

One problem with the productivity growth decompositions originates from the over-representation of
large plants in the benchmark sample. Because of this, entering and exiting plants are under-represented
in the benchmark sample, and the decompositions understate the role of net entry as a source of aggregate
productivity growth. In Online Appendix A.10, I show that the qualitative patterns of this section (in
particular, the difference in the size of the Net Entry Effect between the three productivity measures) hold
after correcting for the under-representation of entering and exiting plants.
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materials prices, and because (large) entrants pay relatively low prices, the difference
between the productivity of exiting and surviving plants (and between entrants and
incumbents) is larger for productivity measures that embody plants’ materials prices.
As a result, the contribution of reallocation, via entry and exit, is smaller for the
productivity measure ' that is cleansed of materials prices. These differences, however,
are small and only of marginal statistical significance.

4. Sources of Materials Price Dispersion

I discuss three explanations for the observed within-industry dispersion of intermediate
input prices. The sources of materials price dispersion have implications for the
social benefits generated by each plant. Plants that pay low materials prices by
taking advantage of monopsonistic power are not providing any societal benefit: Low
materials prices are a transfer of profits from supplier to buyer. However, if plants
pay low materials prices because their suppliers are exceptionally productive, low
materials prices represent a positive impact on social welfare. The fraction of these
welfare benefits that accrue to consumers will depend, in turn, on the degree to which
lower input prices are passed on to final consumers.

To calculate the relative importance of these different sources of materials price
dispersion, I need to impute, for each manufacturer, the identities of its suppliers. I
outline, in Section 4.1, the algorithm that I use to impute buyer-supplier relationships.
In Section 4.2, I compute the fraction of dispersion in tfpq andpin that can be explained
by plants’ geographic locations, their suppliers’ marginal costs, and within-supplier
deviations. A positive correlation between plants’ materials prices and their suppliers’
marginal costs stimulates the following question: If plants with low marginal cost
suppliers pay less for their inputs, and if having low materials prices is so advantageous,
then what prevents plants from purchasing their materials from the low marginal cost
suppliers? In Section 4.3, I argue that buyer–supplier relationships are persistent,
suggesting that there is some inertial force that inhibits all plants from switching to
low marginal cost suppliers.28

4.1. Imputation of Buyer–Supplier Relationships

To impute buyer–supplier relationships, I use the algorithm introduced by Atalay,
Hortaçsu, and Syverson (2013). The algorithm generates a list of establishments that
could potentially receive any shipment that is observed in the Commodity Flow Survey.
Consider a hypothetical shipment of commodity c made by establishment h to zip code
z. The establishments, i , that could potentially receive this shipment are those who
are located in z and are members of an industry that use c. For example, the potential
recipients of a shipment of Portland cement to z would be all plants in that zip

28. Foster, Haltiwanger, and Syverson (2008) provide additional anecdotal evidence for the importance
of relationship capital; see footnotes 23 and 24 of their paper.
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code that are engaged in road construction, concrete brick manufacturing, ready-mix
concrete manufacturing, or wholesaling of brick, stone, and related materials. If there
are multiple potential recipients of the shipment, and one of these establishments is
owned by the same firm as the sending establishment, then I assume that the shipment is
received by the same-firm establishment.29 Otherwise, I assign each potential recipient,
i , to be downstream of plant h.30

In order to compute suppliers’ marginal costs, I require the upstream industry
to also be part of the manufacturing sector. Of the ten industries in the benchmark
sample, only two—ready-mix concrete and corrugated boxes—have a main input that
is produced by a manufacturer. The industries with establishments that could potentially
receive Portland cement (STCC D 32411) are road construction firms (SIC D 1610–
1619), concrete brick and block manufacturers (SIC D 3271), ready-mix concrete
manufacturers (SIC D 3273), and wholesalers of brick, stone, and related materials
(SIC D 5032).31,32 For paper and paperboard manufacturers, I look for shipments in
the Commodity Flow Survey for which the commodity code is that of paperboard
(STCC D 26311 in 1993, SCTG D 27319–27320 in 1997), which are also sent
to zip codes that contain establishments in either the corrugated and solid fiber boxes
(SIC D 2653) industry or the folding paperboard boxes (SIC D 2657) industry. Finally,
I drop shipments for which the unit price is greater than four times, or less than one-
fourth, the average for the industry-year.

For within-firm shipments, surveyed establishments do not report the actual market
value of the transaction. Instead, the establishments are asked to estimate what the value
of the shipment would have been had it been sold to some other firm. Since it is unclear
what these values actually represent, I remove downstream establishments who receive
a substantial fraction, 15% or more, of the relevant input from other plants from the
same firm.33

29. Atalay, Hortaçsu, and Syverson (2013) make the same assumption. This assumption is motivated by
the finding that establishment h is much more likely to ship to zip codes that contain an establishment
from the same firm. The results of the current section are not sensitive to this assumption.

30. Assigning all potential recipients, i , to be downstream of plant h likely overcounts the number of
buyer–supplier relationships. In an unreported robustness check, I reproduce the analysis of Section 4.2,
weighing observations by the inverse of the number of potential recipients in the destination zip code. I
find that the results are essentially unchanged.

31. The commodity code used in the 1993 Commodity Flow Survey is the Standard Transportation
Commodity Code (STCC). A list of STCC codes can be found in pages 117 to 167 of “Reference Guide for
the 2008 Surface Transportation Board Carload Waybill Sample”, published by Railinc. Since 1997, the
Commodity Flow Survey has used the Standard Classification of Transported Goods (SCTG) classification
of commodity codes. Documentation related to SCTG codes can be found on the Census web page.

32. Productivity data for cement and ready-mix concrete manufacturers are unavailable in 1997. So, for
cement and concrete manufacturers, I only look at buyer–supplier relationships in the 1993 Commodity
Flow Survey.

33. While varying the 15% cutoff down to 0% or up to 25% does not affect this section’s results, the
relationship between input prices and supplier productivity begins to disappear once the cutoff exceeds 25
or 30%.

Bernard, Jensen, and Schott (2006) show that reported prices on cross-border shipments, for which
the sender and receiver are part of the same firm, are manipulated to take advantage of the different tax
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4.2. Sources of Materials Price Dispersion

The purpose of this section is to describe and assess the quantitative importance of the
three potential sources of materials price variation.

I begin with some notation. Let 
hit denote the total mass (in thousands of pounds)
of shipments sent by plant h to plant i in year t , and let !hit denote the total value (in
thousands of real dollars) of shipments sent by plant h to plant i in year t . Then, the
free on board (f.o.b.)34 price that plant h charges plant i is simply the ratio of the value
to the price:

P CFS
hit � !hit


hit
: (17)

The “CFS” superscript denotes prices computed using the Commodity Flow Survey
data (as opposed to the prices that are computed in Section 3, using data from the Census
of Manufacturers).35

For each downstream plant i , input prices are defined by taking the value-weighted
average over all plants, h; that I observe i purchasing from:

P
in;CFS
it �

P
h2�.i/ !hitP CFS

hitP
h2�.i/ !hit

: (18)

In equation (18), and throughout the remainder of this section, �.i/ refers to the
suppliers of plant i , excluding the establishments that are in the same firm as plant i .
Note that, because it does not include freight charges, P in;CFSit will be less than what
plants pay for their intermediate inputs. I define a second plant-level input price, which
includes freight charges:

QP in;CFS
it �

P
h2�.i/ !hit

�
P CFS
hit

C �hit
�P

h2�.i/ !hit
: (19)

I estimate transportation costs �hit from the mileage of the shipment and the mode
of transport.36,37

policies of the destination and source countries. Even though such an incentive to mis-report does not exist
in the Commodity Flow Survey data, I argue that one should not put too much weight on input prices of
the plants that buy a substantial fraction of their inputs from within the firm.

34. Unlike the (cost, insurance, and freight) c.i.f. price, the f.o.b. price does not include freight or
insurance charges.

35. The Commodity Flow Survey has, up to now, been an unexploited source of data on plants’ output
prices. With this in mind, I compare plants’ output prices, derived from the Commodity Flow Survey to the
prices derived from the better-known Census of Manufacturers. For the 66 cement manufacturers in this
section’s sample, the correlation between pout;CFS

h and pout
h

is 39%. For the 162 paperboard manufacturers,
the correlation between the two plant-level output prices is 60%.

36. The Bureau of Transportation Statistics collects information on ton-mile freight charges for shipments
sent along different transport modes; see US Department of Transportation (2009). Since the Commodity
Flow Survey contains information on the weight of each shipment, as well as the distance that the shipment
traveled, it is straightforward to estimate the shipment freight charge.

37. For the corrugated-box manufacturing industry, I relate Qpin;CFS
it and pin

it . (Remember that pin
it cannot

be computed in 1992 or 1997 for ready-mix concrete manufacturers.) The strength of this relationship,
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TABLE 9. Relationship between materials prices and nearby limestone production.

Nearby limestone –0.043�� –0.138�� –0.232��
employment (0.005) (0.012) (0.028)
(Nearby limestone 0.047�� 0.159��
employment)2 (0.005) (0.028)
(Nearby limestone –0.031��
employment)3 (0.007)
Adjusted-R2 0.034 0.056 0.060

Notes: Observations are revenue weighted.N D 3,708.
��Significant at 5%.

Similar to the analysis of Section 3, all plant-level statistics are stated as the
percentage deviation relative to the average value for the industry-year. Again, these
deviations are written using lower-case letters.

Geography. Geography is the first of the three sources of materials price variation. As
discussed in Section 3.3, of the ten industries in the benchmark sample, concrete is the
industry with the strongest spatial correlation in materials prices, while the corrugated-
box industry displays relatively weak spatial correlation. Cement prices tend to be lower
in areas with an abundance of limestone, namely in the Appalachian and Great Lakes
regions.38 To assess the relationship between concrete plants’ materials prices and
their proximity to limestone production, I regress—for the 3,708 concrete plant-year
observations in the benchmark sample—pin

ijt against a cubic polynomial of nearby
employment in the limestone industry. The coefficient estimates given in the final
column of Table 9 imply that the materials price of concrete plants is roughly 10%
higher for plants that are in the 75th percentile of the limestone proximity index,
relative to plants in the 25th percentile.

Suppliers’ Marginal Costs. Even within geographical areas, there is heterogeneity in
plants’ suppliers’ marginal costs. For any concrete or corrugated-box manufacturer i
that is identified by the algorithm outlined in Section 4.1, I compute average supplier
productivity TFPQit as follows:

TFPQit �
P
h2�.i/ !hitTFPQhtP

h2�.i/ !hit
. (20)

between the materials prices computed from the two data sources, indicates the success (or lack thereof) of
the imputation procedure outlined in Section 4.1. The correlation between Qpin;CFS

it and pin
it is 22%, meaning

that I am mismeasuring many buyer–supplier relationships, but that the imputation algorithm yields a
viable dataset.

38. In 1997,48% of limestone shipment value originated from eight states—Alabama, Kentucky, Illinois,
Indiana, Ohio, Pennsylvania, Tennessee, and West Virginia— which represent roughly 24% of the US
population. See http://www.census.gov/prod/ec97/97n2123b.pdf for the state-by-state data on limestone
production.
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The dispersion of tfpqit (the percentage deviation of TFPQit from its industry-year
average) is substantial. For plants in the ready-mix-concrete (box-making) industry, the
standard deviation of tfpqit is 41% (26%). After including year by geographic division
fixed effects, the standard deviation of tfpqit is 36% for the ready-mix concrete industry,
and 25% for the corrugated box industry.39

Within-Supplier Price Differences. A third explanation for price variation lies in
differences in the relative bargaining power of the suppliers and buyers of any given
material input, yielding variation in the prices that suppliers charge, for the same
good, across destinations. Define a supplier’s average output price P out;CFS

ht
as a value-

weighted average of the prices that it charges in its Commodity Flow Survey shipments.
For each buyer–supplier relationship, I define the within-supplier price deviation  hit
as

hit � log
P CFS
hit

P
out;CFS
ht

!
, (21)

where hit is the price that i pays for h’s output, relative to the other plants that buy
intermediate inputs from h; hit is positive provided plant i purchases its material
inputs from h at a higher price than P out;CFS

ht
, the average output price of supplier, h.

Figure 1 decomposes the price distribution into two separate components. Any
buyer–supplier-specific price pCFS

hit
is the sum of the supplier’s average output prices

p
out;CFS
ht

and the within-supplier price deviation  hit : The price pCFS
hit

that a supplier
charges a buyer for intermediate inputs can be, mechanically, high for one of two
reasons: either the supplier has a high average price pout;CFS

ht
or the supplier charges i a

higher price than its other customers (i.e., hit is large).40 For my sample of cement and
paperboard manufacturers, the distributions of pCFS

hit
;  hit , and pout;CFS

ht
are depicted in

Figure 1. The standard deviation of pCFS
hit

is 25%, which is 30% larger than the standard

deviation of suppliers’ average output prices (SD.pout;CFS
ht

/ D 19%), and 50% larger
than the standard deviation of the within-supplier deviations (SD. hit / D 16% ).41

The average within-supplier price deviation it measures the extent to which plant
i pays its supplier a higher materials price than the other customers of its suppliers. It

39. There are nine Census-defined divisions within the United States. See http://www.census.gov/
geo/www/us_regdiv.pdf for a correspondence between states and divisions.

40. Price discriminatory behavior, which would result from differences in buyers’ and suppliers’
bargaining positions, is a first explanation for these within-supplier price differences. In addition, some of
the within-supplier variation in materials prices may potentially be due to the time at which plant i receives
its shipments from plant h. In Online Appendix A.11, I argue that, at least for this small sample of concrete
and box manufacturers, the timing of shipments is not a primary source of materials price variation.

41. Figure 1 looks similar, whether one uses the sample of cement manufacturers, the sample of
paperboard manufacturers, or the pooled sample of paperboard and cement manufacturers. See Online
Appendix A.12.
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FIGURE 1. Value-weighted price distributions. The sample includes all shipments sent by the cement
and paperboard manufacturers that comprised the sample of the regression defined by equation (23).

is a weighted average, over i ’s suppliers, of the hit :

 it �
P
h2�.i/ !hit hitP
h2�.i/ !hit

D
P
h2�.i/ !hit

�
phit � pout;CFS

ht

�
P
h2�.i/ !hit

: (22)

Regression Results. Using these definitions, I can now compare the price that a plant
pays for its material inputs to differences in geography (summarized by division
fixed effects), differences in suppliers’ marginal costs, and within-supplier price
differences:42

Qpin;CFS
it D ˇdivision C ˇ1tfpqit C ˇ2 it C "it: (23)

The results are presented in Table 10. A 10% increase in the marginal cost of
plants’ suppliers corresponds to a 2:0% to 2:5% increase in plants’ materials prices.
The estimated effect of supplier productivity on materials prices is somewhat stronger
for boxes than it is for ready-mix concrete. Including fixed effects for the geographic
region of the downstream plant has almost no effect on the estimate of ˇ1.43 Finally,

42. Using pin;CFS
it instead of Qpin;CFS

it as the dependent variable of the regression corresponding to equation
(23) generates a similar estimate of ˇ

1
.

43. It is possible that division fixed effects are too coarse to sufficiently control for the geographic
variation in materials prices. Online Appendix A.13 presents evidence that this is not the case.
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TABLE 10. Regression results.

Sample Boxes Concrete Pooled

tfpqit �0.267�� �0.257�� �0.233�� �0.201�� �0.210 �0.146 �0.253�� �0.243�� �0.212��

(0.059) (0.057) (0.056) (0.092) (0.110) (0.105) (0.050) (0.048) (0.047)

it 0.340�� 0.691�� 0.406��

(0.111) (0.165) (0.118)
N 190 190 190 131 131 131 321 321 321
Adjusted-R2 0.129 0.133 0.223 0.046 0.091 0.511 0.107 0.117 0.263
Division F.E.? No Yes Yes No Yes Yes No Yes Yes

Notes: This table presents coefficient estimates and robust standard errors, from the regressions defined by
equation (23). The dependent variable in this regression is Qpin;CFS

it . Observations are assigned weights according
to the revenues of plant i .
��Significant at 5%.

TABLE 11. Unexplained materials price variation.

Include division
fixed effects ? No Yes No Yes No Yes No Yes
Include tfpqit? No No Yes Yes No No Yes Yes
Include  it? No No No No Yes Yes Yes Yes

Sample Sample size

Boxes 190 0.187 0.180 0.174� 0.170� 0.175� 0.169� 0.164� 0.160�
Concrete 131 0.359 0.338 0.349 0.330 0.268� 0.247� 0.262� 0.241�
Pooled 321 0.209 0.204 0.197� 0.194� 0.189� 0.185� 0.180� 0.177�

Notes: Each cell gives the real-revenue-weighted standard deviation of the residuals in a particular regression; the
full specification is given in equation (23). Across the columns of the table, different combinations of independent
variables are included in the regressions.
�The decline in dispersion is significantly more than the decline that would occur from simply including “fake”
random variables on the right-hand side of equation (23). See Online Appendix C for details.

the coefficient estimate ˇ2 on the average within-supplier deviation term is positive
and significant. Note that a mechanical relationship between  it and Qpin;CFS

it exists,
as higher-than-average-priced shipments will generate a large value for Qpin;CFS

it (see
equation (19)) and a large value of it (see equation (22)). Measurement error inP CFS

hit
,

for example, will skew the coefficient estimate of ˇ2 towards 1.
Each cell in Table 11 presents the unexplained variation—measured as the

(revenue-weighted) standard deviation of the residuals—when Qpin;CFS
it is regressed

on different combinations of the right-hand side variables of equation (23). Comparing
the first and second columns of Table 11, I calculate that the inclusion of division fixed
effects reduces the unexplained variation of materials prices by approximately 2%.
The inclusion of suppliers’ productivities reduces the unexplained variation by
approximately 6%, while the two sets of variables jointly reduce the unexplained
price variation by 7%. Finally, the full combination of right-hand-side variables—
including the average within-supplier deviation—reduces the unexplained variation of
Qpin;CFS
it by 15%. To summarize, both within-supplier and between-supplier explanatory

factors are significant and quantitatively important when accounting for the dispersion
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in downstream plants’ materials prices.44 These findings indicate that while purely
geographical considerations—such as spatial differences in resource abundance—
drive some of the differences in materials prices, the factor market’s competitive
environment is also of primary significance.

4.3. Persistence of Relationships

Buyer–supplier relationships are persistent across time, suggesting that there is some
force that inhibits intermediate inputs purchasers from switching suppliers. Whether
this inhibiting force reflects some extra profitability that is conferred by repeated
interaction, or some idiosyncratic match-specific productivity, it prevents all buyers
from switching to the lowest-cost intermediate goods suppliers.

To provide some empirical evidence for the persistence of buyer–supplier
relationships, I explore the shipments sent by cement and paperboard manufacturers
in the 1993 and 1997 Commodity Flow Surveys. As before, the Commodity Flow
Survey does not identify the downstream buyer. Instead, I proxy for the identity of the
downstream buyer using the destination zip code. I run a conditional logit regression,
described by equation (24); the dependent variable equals 1 if the cement/paperboard
plant i ships to zip code z in 1997. The explanatory variable of interest is an indicator,
which equals 1 if the plant shipped to the zip code in 1993. Destination zip code-level
fixed effects, supplier fixed effects, and the log distance between i and z are additional
explanatory variables:

I fi ! z in 1997g D ˇz C ˇi C ˇ3 log .distance i ! z/C ˇ4I fi ! z in 1993g
C ˇ5I fplant of i’s firm is located in z in 1997g C "iz : (24)

The results are presented in Table 12. Both cement and paperboard suppliers’
decisions on which destinations to ship to are persistent across time. If plant i sells
to zip code z in 1993, the probability that i will sell to z in 1997 is much larger,
approximately 6 to 8 times larger for cement manufacturers, and 10 to 14 times larger
for paperboard manufacturers.

There are two distinct interpretations of the positive estimate on ˇ4, the coefficient
on the persistence of buyer–supplier relationships (see, for example, Dubé, Hitsch, and
Rossi 2010). In the first interpretation, an establishment’s profitability of working with
a counterparty increases from having transacted with that counterparty in the past.
Kellogg (2011), for instance, documents that oil production companies and drillers
become more productive as they gain experience working with one another. According

44. Regarding the statistical significance of the results, note that any set of variables—for example, a
random variable drawn from a standard normal distribution, or a set of twelve dummy variables that sum
up to 1—will necessarily explain some positive fraction of the variation in Qpin;CFS

i . In Online Appendix C, I
test whether the decline in dispersion is significantly greater than what would be expected from including
different combinations of “fake” random variables on the right-hand side of equation (23).
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TABLE 12. Persistence of buyer–supplier relationships.

Sample Cement Cement Cement Paperboard Paperboard Paperboard

Log mileage –2.835 –2.594 –2.593 –1.025 –0.867 –0.881
(0.050) (0.050) (0.051) (0.024) 0.026 (0.026)

Did the plant sell to 2.075 2.009 2.988 2.661
the zip code in 1993? (0.105) (0.105) (0.067) (0.069)
N 106,795 106,795 106,795 75,360 75,360 75,360
Number of zip codes 2,015 2,015 2,015 1,256 1,256 1,256
Number of plants 53 53 53 60 60 60
Pseudo-R2 0.687 0.713 0.718 0.148 0.257 0.290
Unconditional

probability of
shipping to zip code z

0.021 0.021 0.021 0.030 0.030 0.030

Include control for firm
presence in z?

No No Yes No No Yes

Notes: This table presents coefficient estimates and standard errors, from the regression defined by equation (24).
The sample is comprised of cement and paperboard plants that were included in the sample of Regression (23).
For a zip code to be in the sample, at least one plant in the sample must have shipped to the zip code in 1997.45

to the second interpretation, some establishments happen to find it more profitable
to work with certain counterparties for idiosyncratic reasons, other than geographic
proximity. The estimate of the persistence term ˇ4 will be positive provided these
idiosyncratic factors display some persistence. Unfortunately, the data that I have
at hand do not permit me to distinguish between these two interpretations. Either
interpretation, however, is consistent with downstream establishments that decide to
remain matched with high marginal cost suppliers.

5. Conclusion

In this paper, I have studied the consequences and sources of materials price dispersion.
Variation in materials prices explains a substantial fraction of the variation in plants’
marginal costs, revenue total factor productivities, and probabilities of survival.
Moreover, one reason why some plants have low materials prices is that they have
access to suppliers with low marginal costs.

The paper’s results suggest that establishments’ survival and growth prospects are
directly related to those of their customers and/or suppliers. In future work, I hope
to investigate the relationship between establishments’ growth and the growth rates
of their counterparties. Such an investigation will be an important building block

45. In addition, I restrict the sample to establishments that were sampled in both the 1993 and 1997
Commodity Flow Surveys. Secondly, in order to comply with Census disclosure rules, I restrict the sample
to plants that are members of firms f such that the following three criteria hold: (a) there exists at least
one i , z pair for which plant i (owned by f ) shipped to z in 1993, but not in 1997; (b) there exists at least
one i , z pair for which plant i shipped to z in 1997, but not in 1993; and (c) there exists at least one i , z
pair for which i shipped to z in both 1993 and 1997. The coefficient estimates are similar when the sample
is constructed without this second restriction.
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in understanding the propensity with which shocks to a small set of firms have the
potential to cascade throughout the economy and produce aggregate fluctuations.

Appendix: Robustness Checks and Other Calculations

A.1. Industries with Heterogeneous Quality Outputs

In this section, I reproduce the empirical analysis of Sections 3.1–3.3 for a set of
industries that display substantial output quality variation. The four industries that I
choose for this exercise are cucumber pickles, sausages, softwood cut stock, and wine.
Details on the construction of the sample can be found in Online Appendix B.2.

Correlations among plant-level characteristics are presented in Table A.1.
Compared to the benchmark sample, the standard deviations of most plant-level
characteristics are larger, while the correlations among the different productivity
measures are, in general, weaker. While the correlation between tfpr andpin is negative
(�0:232) and significant in the benchmark sample, in the Quality Variation sample there
is essentially no relationship between input prices and revenue productivity. Within the
Quality Variation sample, high materials prices reflect high-quality inputs, which in
turn lead to greater profitability. (There is still the countervailing relationship—as for
the benchmark sample—where high materials prices reflect unfavorable factor market
conditions, potentially lowering profitability.)

The dispersions of tfpq and ' are given in Table A.2. For the pooled sample,
the dispersions of the two distributions are essentially the same. Looking across the
four industries, there is a significant decline in productivity dispersion for one of the
industries, softwood cut stock, and no difference for the other three industries.

In Table A.3, I present regression results, in which I regress plants’ materials
prices against the materials prices of nearby plants (those within 250 miles, in the
same industry-year). The fraction of materials price variation that is explained by
neighbors’ average materials prices is essentially 0 for each of the four industries in
the Quality Variation sample.

In summation, output quality variation has the potential to severely attenuate the
difference between the dispersions of ' and tfpq. To the extent that any quality variation

TABLE A.1. Correlations and standard deviations of plant-level characteristics.

pin pout tfpq ' tfpr

pout 0.284��
tfpq –0.273�� –0.808��
' 0.254�� –0.659�� 0.858��
tfpr 0.024 0.329�� 0.305�� 0.290��
Std. Dev. 0.318 0.385 0.380 0.380 0.237

Notes: Observations are revenue weighted.N D 1,256.
��Correlation is significantly different from 0, at the 5% level (see Online Appendix C for details).
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TABLE A.2. Dispersion of tfpq and '.

Dispersion of tfpq Dispersion of ' Percentage decline

Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD N

Pickles 0.891 0.446 0.344 0.881 0.412 0.339 1.2% 8.6% 1.3% 145
Sausages 0.727 0.399 0.295 0.747 0.366 0.301 �2.7% 9.5% �2.0% 621
Softwood 1.571 0.818 0.547 1.316 0.697 0.477 21.4%�� 18.9% 16.0%�� 160
Wine 1.314 0.696 0.479 1.268 0.726 0.481 3.6% �4.0% �0.5% 330
Pooled 0.948 0.494 0.380 0.977 0.486 0.380 �2.9% 1.7% 0.0% 1256

Notes: Observations are revenue weighted.
��The difference between tfpq and ' is significant at the 5% level (see Online Appendix C for details).

TABLE A.3. Spatial correlation of materials prices.

Sample ˇ S.E. Adjusted-R2

Pickles 0.124 0.130 –0.001
Sausages 0.038 0.075 –0.001
Softwood –0.165 0.137 0.003
Wine –0.456 0.195 0.013
Pooled –0.017 0.064 –0.001

Notes: The dependent variable is pin
ijt , and the independent variable is the (revenue-weighted) average of the

pin
i 0jt

for the plants that are within a 250-mile radius of plant i in industry j and year t . Observations are revenue
weighted.

exists in the benchmark sample, the difference between the dispersions of ' and tfpq,
as reported in Table 3, may be downwardly biased.

A.2. Variation in Input Quality

One of the main assumptions of the empirical analysis is that variation in input quality
is not an important source of variation of input prices. I have chosen industries to try
to minimize the role of input quality differentiation. There is one specific industry,
ready-mix concrete, for which there is reason to suspect that input quality differences
could be contaminating some of the results. In this section, I explain why input quality
varies across plants, and then determine how big an effect input quality variation has on
the observed relationships between input prices and different productivity measures.

Portland cement, the main intermediate input used in the production of ready-mix
concrete, comes in four types, labeled type I, II, III, or IV.46 Type-I and II cement
account for over 90% of the expenditures on cement, with the majority of sales coming
from type-I cement (US Department of Interior 1989). In areas where the soil has

46. The standards for the different types of Portland cement are set by the American Society for Testing
and Materials (ASTM). See the ASTM web page for more information on the distinguishing features of
different types of Portland cement: http://www.astm.org/Standards/C150.htm.
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TABLE A.4. Correlations between plant-level characteristics.

Sample pin, tfpq pin, ' pin, pout pin, tfpr ', tfpq tfpq, tfpr tfpq, pout N

Entire United
States

–0.306�� 0.120�� 0.276�� –0.127�� 0.908�� 0.741�� –0.476�� 3708

Divisions 1–7 –0.341�� 0.089�� 0.251�� –0.180�� 0.906�� 0.750�� –0.430�� 3049
Divisions 8–9 –0.351�� 0.066 0.360�� –0.105 0.911�� 0.688�� –0.597�� 659

Notes: Observations are revenue weighted.
��The correlation is significantly different from 0, at the 5% level.

high sulfate concentrations, type-II cement may be preferable to the less expensive
type-I cement, since ready-mix concrete produced using type-I cement is susceptible
to sulfate attack (cracking or loss of strength in the presence of sulfate). Since high
sulfate concentrations exist only in the soil of parts of the western third of the United
States, one should observe type-I and type-II cement consumed in the western United
States, and only type-I cement consumed in the remainder of the United States.47

Given this geographic difference in soil composition, I split the sample of ready-
mix concrete plants into two subsamples: plants residing in Census divisions 1–7, and
plants located in Census divisions 8–9.48 The dispersion of pin is larger in divisions
8–9 (20:0%, versus 17:0% for divisions 1–7), as some ready-mix concrete plants
purchase the low-price type-I cement, while others must purchase the high-price type-
II cement. In contrast, in the eastern United States, virtually all ready-mix concrete
plants purchase type-I cement, leading to a more compressed pin distribution. For
both subsamples, tfpq and pin are inversely related to one another, with the negative
relationship between tfpq and pin somewhat stronger in the eastern United States; see
Table A.4. These geographic differences are consistent with greater cement quality
variation in the western United States.

In Table A.5, I compute the dispersion of tfpq and ' for the ready-mix concrete
subsamples. The decline in dispersion is larger for each of the two subsamples than it
is for the pooled sample of 3,708 ready-mix concrete plants.

In Table A.6, I assess the spatial correlation of materials prices, separately for
plants in the eastern and western United States. Materials prices are strongly spatially
correlated, within each of the two parts of the United States. Thus, it does not seem as
if the spatial correlation of cement prices is primarily due to higher-than-average input
quality in the western United States.

In summation, there is almost no variation in the quality of cement purchased
by ready-mix concrete plants in the eastern two-thirds of the United States. For this
subsample, the difference between the standard deviation of tfpq and the standard

47. Cement type is not recorded in the Census of Manufacturers materials file. I confirm, using the Census
of Manufacturers production file, that only type-I cement is produced by plants in the eastern two-thirds
of the United States, while both types I and II are produced in the western United States.

48. Census division 8 is made up of Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah,
and Wyoming, while Census division 9 includes Alaska, California, Hawaii, Oregon, and Washington.
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TABLE A.5. Dispersion of tfpq and '.

Dispersion of tfpq Dispersion of ' Percentage decline

Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD N

Entire United
States

0.521 0.251 0.224 0.486 0.236 0.215 7.4%�� 6.6%�� 4.4%�� 3708

Divisions 1–7 0.486 0.238 0.211 0.439 0.222 0.199 11.3%�� 7.7%�� 6.2%�� 3049
Divisions 8–9 0.611 0.296 0.255 0.570 0.253 0.239 7.4% 18.3%�� 6.9%�� 659

��The difference between tfpq and ' is significant at the 5% level.

TABLE A.6. Spatial correlation of materials prices.

Sample ˇ S.E. Adjusted-R2

Entire United States 0.913 0.028 0.222
Divisions 1–7 0.936 0.033 0.210
Divisions 8–9 0.812 0.068 0.177

Notes: The dependent variable is pin
ijt , and the independent variable is the (revenue-weighted) average of the

pin
i 0jt

for the plants that are within a 250-mile radius of plant i in industry j and year t . Observations are revenue
weighted.

deviation of ' is 2 to 3 percentage points larger than the differences that are reported
in Table 3. So, a moderate amount of materials quality variation would probably cause
me to somewhat under-report the fraction of productivity dispersion that is due to
differences in factor market conditions.
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Appendix A: Robustness Checks and Other Calculations

A.3. Substitution Between Material Inputs and Other Inputs

The empirical analysis of Section 3 invokes the assumption that the elasticity of
substitution, O%, between material inputs and all other inputs equals 1 (see Assumption
1). In reality, material inputs are likely to be complements to other inputs. In this
subsection, I analyze how the dispersion of ' differs under different assumptions on
O%.

Consider a plant with technical ef�ciency ˆijt : Assume that, for plant i ,
the price of a unit of the "priced" intermediate input is P inijt , and let the corresponding
industry-year average be NP injt . The prices of the other inputs are assumed to be the same
for all plants in the industry-year (see Assumption 2). With an elasticity of substitution
of O%, plant i ’s marginal cost equals:

MCijt D
1

ˆijt

24Sjt � �jt � P inijt
NP injt

!1�O%
C 1� Sjt � �jt

35 1
1�O%

(A.1)

As in Section 3, �jt � Sjt refers to the expenditure share of "priced" materials.
Equation (A.1) states that plants’ marginal costs are determined by their technical
ef�ciencies (ˆijt ) and the composite price that they face for intermediate inputs and
other inputs. The elasticity, O%, dictates how the prices of intermediate inputs and other
inputs are combined. As O% decreases, a larger weight is allotted to the input with a
higher relative price.

E-mail: atalay@uchicago.edu
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O% 0.2 0.4 0.6 0.8 1.0
Revenue- Yes 0.1507 0.1507 0.1507 0.1507 0.1506
weighted? No 0.2193 0.2192 0.2192 0.2191 0.2191

Table A.7. Dispersion of ', as computed using equations (9) and (A.2).
Notes: The dispersion of ', when O% D 1:0, equals the value given in the �nal two rows of Table 3.
N=10,503.

Re-arranging equation (A.1) yields the following expression forˆijt in terms
of TFPQijt and P inijt :

ˆijt D TFPQijt

24Sjt � �jt � P inijt
NP injt

!1�O%
C 1� Sjt � �jt

35 1
1�O%

(A.2)

For the pooled benchmark sample, I use equation (A.2) to compute the
standard deviation of 'ijt , for O% 2 ¹0:2; 0:4; :0:6; 0:8; 1:0º. These results, which are
presented in Table A.7, illustrate that the dispersion of ' is robust to changes in the
elasticity of substitution, even as O% approaches 0. Varying the elasticity of substitution,
O%, only has a noticeable effect on the measured technical ef�ciency for plants that
have very small or very large values of P inijt � NP

in
jt . Since most plants have materials

prices that are close to the industry average, O% does not substantially alter the measured
dispersion of '.

A.4. Substitution Across Material Inputs

Throughout the body of the paper, I assume that the elasticity of substitution
between different material inputs—for industries that use multiple material inputs—
is 0 (see Assumption 4). For plants that produce ready-mix concrete, I assess the
importance of the assumption that plants may not substitute across different material
inputs.

When the elasticity of substitution between gravel/sand and cement is
constant (but not necessarily 0), the price of a bundle of material inputs equals:

P inijt �

24 sGraveljt

sGraveljt C sCementjt

�
P in
Gravel;ijt

NP in
Gravel;jt

!1�%
C

sCementjt

sGraveljt C sCementjt

�
P inCement;ijt
NP inCement;jt

!1�%35 1
1�%

(A.3)
In equation (A.3), sGraveljt refers to the share of materials expenditures that go to

gravel, P in
Gravel;ijt

is the price that plant i pays per 1000 pounds of gravel in year

t , NP in
Gravel;ijt

is the geometric average of the price paid by all ready-mix concrete
producing plants in year t , and % is the elasticity of substitution between cement and
sand/gravel. In the baseline analysis, I had set % D 0.

Using equation (A.3), I compute ready-mix concrete plants’ materials prices.
I then re-computeˆijt , using equation (8), and 'ijt , using equation (9). The dispersion
of ' is given in Table A.8. As % increases, the price of a bundle of intermediate
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Sample
Revenue-
weighted?

90/10 SD 90/10 SD 90/10 SD N

% 0.1 0.1 0.3 0.3 0.5 0.5
Concrete No 0.5223 0.2302 0.5223 0.2302 0.5222 0.2303 3708

Yes 0.4864 0.2151 0.4863 0.2151 0.4862 0.2151 3708
Pooled No 0.4930 0.2190 0.4929 0.2190 0.4928 0.2191 10,503

Yes 0.3240 0.1506 0.3240 0.1506 0.3240 0.1506 10,503
Table A.8. Dispersion of ', as computed using equations (8), (9), and (A.3).

inputs decreases for plants that have exceptionally cheap input prices for one of the
two intermediate inputs. Also, as % increases, the relative price of the bundle increases
for plants that pay roughly the same relative price for the two intermediate inputs. It
turns out that, in combination, these two effects have almost no impact on the overall
dispersion of '.

A.5. An Alternative Measure of Plant Productivity

In this subsection, I re-compute Table 3 using the productivity measure discussed
in Caves, Christensen, and Diewert (1982) (hereafter, CCD). Unlike the current paper,
which uses a Cobb-Douglas productivity measure, CCD assume that plants’ production
technologies take the (more �exible) translog form. Moreover, the parameters of this
production function are allowed to vary across the plants within an industry. A third
difference, between the current paper and CCD, is that the latter paper invokes the
assumption that plants (�exibly) choose inputs to minimize costs.

The set-up in Caves, Christensen, and Diewert (1982) yields the following
comparison of plants’ productivities (see equation (33) of that paper):1

ˆCCDijt � Qijt �
�
Lijt

���jtC�ijt
2 �

�
Kijt

�� �jtC�ijt
2 �

�
Eijt

�� "jtC"ijt
2 �

�
Nijt

���jtC�ijt
2 .
(A.4)

In equation (A.4), �jt , �jt , "jt , and �jt are the industry average cost shares of labor,
capital, electricity, and materials (as in Section 2.4), while �ijt , �ijt , "ijt , and �ijt are
the corresponding plant-speci�c cost shares. The other two productivity measures are
de�ned as follows:

TFPQCCD
ijt D ˆijt �

�
P inijt

���jtC�ijt
2

TFPRCCDijt D TFPQCCD
ijt � P outijt

Table A.9 recomputes the within-industry productivity dispersions, using the
CCD approach for computing plants’ productivities. Here, too, the main results of

1. Unfortunately, I can’t apply the CCD methodology exactly. In that paper, the authors assume that each
plant produces every relevant output and uses every relevant input. To give an example, when comparing
plants in the ready-mix concrete industry, if there are some plants that manufacture concrete bricks (a
product distinct from ready-mix concrete), then all plants must produce at least some concrete bricks. This
assumption turns out to be violated in the data. For this reason, I de�ate input purchases in the manner
described by equation (1).
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Revenue- Dispersion of tfpqCCD Dispersion of 'CCD Percent Decline
weighted? 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD

Yes 0.438 0.203 0.188 0.391 0.193 0.177 12.8%* 5.7% 6.4%*
No 0.521 0.249 0.229 0.489 0.234 0.219 6.7%* 6.5%* 4.5%*

Table A.9. Dispersion of tfpq and '.
Notes: In the �nal three columns, stars indicate that the difference between tfpq and ' is statistically
signi�cant, at the 5% level (see Web Appendix C for details).

Table 3 survive. The difference in the dispersion of tfpq and ' ranges between 4:5%
and 12:8%, and is statistically different from 0 for �ve of the six measures. Thus, the
different methodology—due to CCD—yields very similar conclusions regarding the
dispersion of measured productivity that is attributable to materials price variation.

A.6. More Correlations

Table A.10 presents correlations among plant-level characteristics for each of the
10 industries in the benchmark sample.

For several of the correlations, the subsample of raw cane sugar manufacturing
plants is anomalous. For this industry, plants’ marginal costs are unrelated to
their materials prices. Moreover, the correlation between input prices and technical
ef�ciencies is much stronger (48%) than for other subsamples. These patterns are
somewhat puzzling. Most likely, either there is substantial measurement error in the
physical units that cane sugar re�ners use, or there is signi�cant quality heterogeneity
among the raw cane sugar manufacturers.

Except for the raw cane sugar industry, correlations among plant-level
characteristics are qualitatively similar across the different industries in the benchmark
sample. The correlation between materials prices and quantity productivities is
moderately negative for the nine other industries, while the correlation between
quantity productivities and output prices is strongly negative (ranging between �37%
and�88%). Finally, the three productivity measures are always highly correlated with
one another, with the correlation between ' and tfpq being larger than the correlation
between tfpq and tfpr .

A.7. Measurement Error

As discussed in Section 3.2, measurement error in the quantities that a plant
consumes or produces has the potential to bias the correlations among plant-level
characteristics. In this subsection, I assess the importance of measurement error.

To do so, I perform an exercise in which I add a randomly-generated
disturbance to plant-level input and output quantities, and then re-compute the
plant-level productivity measures. In particular, for each of the 10; 503 plant-year
observations in the benchmark sample, I take two draws from a standard normal
distribution. Use �ijt and$ijt to refer to these randomly-generated numbers for plant
i , in industry j , and year t . I apply these randomly-generated numbers to the physical
quantities of input and output purchases, yielding "contaminated" physical quantity
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Sample pin, tfpq pin, ' pin, pout pin, tfpr ', tfpq tfpq, tfpr tfpq, pout

Boxes, Yr.�’87 -0.286* 0.226* 0.280* -0.042 0.868* 0.418* -0.797*
Boxes, Yr.�’92 -0.352* 0.089 0.286* -0.086* 0.901* 0.116* -0.877*
Coffee -0.485* 0.030 0.343* -0.227 0.855* 0.592* -0.584*
Concrete -0.306* 0.120* 0.276* -0.127* 0.908* 0.740* -0.476*
Flour -0.394* 0.468* 0.312* -0.011 0.628* 0.128 -0.722*
Gasoline -0.395* 0.141* 0.171* -0.310* 0.854* 0.824* -0.368*
Milk, Bulk -0.424* -0.149 0.410* -0.072 0.958* 0.444* -0.770*
Milk, Packaged -0.281* 0.049 0.225* -0.104* 0.945* 0.435* -0.754*
Sugar -0.034 0.481* 0.237* 0.100 0.860* 0.858* -0.466*
Yarn -0.301* 0.197 0.211* -0.174* 0.875* 0.491* -0.763*
Pooled -0.369* 0.127* 0.231* -0.232* 0.873* 0.694* -0.551*

Table A.10. Correlations among plant-level characteristics.
Notes: Stars indicate that the correlation is signi�cantly different from 0, at the 5% level (see Web Appendix
C for details).

measures:

Oqijt D qijt C # � �ijt (A.5)

Onijt D nijt C # �$ijt (A.6)

In equations (A.5)-(A.6), and throughout the rest of this subsection, Ox will refer to
the version of any plant-level characteristic, x, that is imbued with extra measurement
error. # is a parameter that characterizes the amount extra measurement error.

The de�nitions of plants’ input prices, output prices, and productivity
measures follow from equations (A.5)-(A.6), in combination with equations (3)-(8):

Opoutijt D poutijt � # � �ijt (A.7)

Opinijt D pinijt � # �$ijt (A.8)

1tfpqijt D tfpqijt C # � �ijt (A.9)

O'ijt D 'ijt C # � �ijt � Sjt � �jt � # �$ijt (A.10)

In this exercise, no extra measurement error is applied to the revenue productivity
measure (tfpr), because both qijt and nijt are absent in the computation of this
variable.

Correlations among the contaminated plant-level characteristics are presented

in Table A.11. Table A.12 displays the standard deviations of O', 1tfpq, bpin, and
bpout , in addition to the 5-year autocorrelation coef�cients of O', 1tfpq, bpin, and
bpout . The takeaways from Tables A.11 and A.12 are that measurement error in input

and output quantities magni�es the correlation between input prices and technical
ef�ciency, and between output prices and quantity productivity. Second, measurement
error attenuates the correlation between input prices and quantity productivity, and
between input prices and revenue productivity. Third, measurement error increases
the dispersions of quantity productivity and technical ef�ciency, with a larger increase
in the dispersion of the technical ef�ciency term. (Since the technical ef�ciency term is
computed using both input and output quantities, it is more sensitive to measurement
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# bpin, btfpq bpin,b' bpin, bpout bpin, tfpr b', btfpq btfpq, tfpr btfpq, bpout
0.01 -0.366 0.128 0.226 -0.234 0.874 0.694 -0.553
0.02 -0.360 0.135 0.218 -0.234 0.874 0.691 -0.558
0.03 -0.350 0.147 0.207 -0.232 0.873 0.687 -0.568
0.04 -0.337 0.163 0.195 -0.229 0.872 0.680 -0.580
0.05 -0.323 0.182 0.182 -0.225 0.870 0.671 -0.595
0.06 -0.306 0.203 0.168 -0.220 0.868 0.660 -0.612
0.07 -0.289 0.226 0.155 -0.215 0.865 0.648 -0.631
0.08 -0.271 0.249 0.141 -0.208 0.863 0.635 -0.650
0.09 -0.254 0.272 0.128 -0.202 0.860 0.621 -0.669
0.10 -0.237 0.294 0.116 -0.195 0.857 0.607 -0.688

Table A.11. Biases generated by measurement error.
Notes: The table presents correlations among plant-level characteristics. In a given row, the standard
deviation of the extra measurement error is given by # . In the calculations, observations are weighed by
real revenues.

Std. Dev. Persistence

# btfpq b' bpout bpin btfpq b' bpin bpout
0.01 0.161 0.151 0.117 0.119 0.180 0.186 0.320 0.305
0.02 0.162 0.152 0.117 0.120 0.184 0.185 0.308 0.300
0.03 0.163 0.155 0.119 0.121 0.187 0.182 0.290 0.292
0.04 0.165 0.158 0.121 0.124 0.189 0.177 0.268 0.281
0.05 0.168 0.162 0.124 0.127 0.189 0.170 0.244 0.268
0.06 0.171 0.166 0.128 0.131 0.189 0.163 0.217 0.254
0.07 0.174 0.172 0.132 0.135 0.187 0.154 0.191 0.239
0.08 0.178 0.177 0.136 0.140 0.185 0.146 0.165 0.224
0.09 0.182 0.184 0.142 0.145 0.182 0.137 0.141 0.210
0.10 0.187 0.191 0.147 0.151 0.178 0.128 0.118 0.197

Table A.12. Biases generated by measurement error.
Notes: The �rst four columns give the standard deviations of quantity productivity, technical ef�ciency,
input prices, and output prices, while the �nal four columns present the 5-year autocorrelation coef�cients
of the same variables. In a given row, the standard deviation of the extra measurement error is given by # .
In the calculations, observations are weighed by real revenues.

error.) Finally, measurement error reduces the estimated persistence of the plant-level
input prices, output prices, and productivity measures.

A.8. Unweighted Results

In this subsection, I present the unweighted versions of Tables 2, 3, 6, A.2, A.3,
and A.10. In the benchmark calculations, observations are revenue weighted. To
preview the main results, all of the main conclusions of Section 3 are robust to the
weighting scheme.

The �rst two tables, Tables A.13 and A.14, give the correlations among plant-
level statistics. Overall, the correlation between pin and pout is somewhat larger,
while the correlation between pin and tfpq is somewhat closer to 0, compared to the
correlations contained in Tables 2 and A.10.
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pin pout tfpq ' tfpr

pout 0.278*
tfpq -0.303* -0.653*
' 0.141* -0.549* 0.899*
tfpr -0.098* 0.212* 0.601* 0.581*
Std. Dev. 0.167 0.186 0.227 0.219 0.176

Table A.13. Correlations and standard deviations of plant-level characteristics.
Notes: Correlations give equal weight to all plant-year observations. Stars indicate that the correlation is
signi�cantly different from 0, at the 5% level (see Web Appendix C for details). Also, see Table 2 for the
real-revenue-weighted version of this table. N=10,503.

Sample pin, tfpq pin, ' pin, pout pin, tfpr ', tfpq tfpq, tfpr tfpq, pout

Boxes, Yr.�’87 -0.406* 0.153* 0.404* -0.061* 0.841* 0.425* -0.824*
Boxes, Yr.�’92 -0.428* 0.142* 0.366* -0.070 0.834* 0.127* -0.873*
Coffee -0.293* 0.227* 0.300* -0.027 0.862* 0.517* -0.645*
Concrete -0.271* 0.107* 0.234* -0.132* 0.928* 0.776* -0.458*
Flour -0.344* 0.454* 0.256* -0.073 0.681* 0.254* -0.715*
Gasoline -0.353* 0.203* 0.125* -0.305* 0.844* 0.840* -0.396*
Milk, Bulk -0.280* 0.033 0.382* 0.079 0.950* 0.522* -0.789*
Milk, Packaged -0.282* 0.054* 0.237* -0.095* 0.943* 0.456* -0.753*
Sugar 0.055 0.459* 0.116 0.118 0.912* 0.889* -0.405*
Yarn -0.354* 0.117 0.297* -0.135* 0.887* 0.455* -0.788*
Pooled-Benchmark -0.303* 0.141* 0.278* -0.098* 0.899* 0.601* -0.653*

Table A.14. Correlations among plant-level characteristics.
Notes: Correlations give equal weight to all plant-year observations. Stars indicate that the correlation is
signi�cantly different from 0, at the 5% level (see Web Appendix C for details). See Table A.10 for the
real-revenue-weighted version of this table.

Compared to the revenue-weighted calculations, the unweighted dispersions
of tfpr , tfpq, and ' are larger (see the �rst eleven rows of Table A.15 for the
benchmark sample, and the �nal �ve rows for the Quality Variation sample). The
larger dispersions have two sources. First, revenue weighting gives more importance
to high revenue-per-plant industries. Since gasoline, which by far has the largest
average revenues among the industries in the benchmark sample, has more compressed
tfpr , tfpq, and ' distributions, assigning weights by revenue causes the pooled
dispersion to be larger in the unweighted calculations. Second, the unweighted
calculations give relatively more weight, within industries, to the low productivity,
low employment plants, again causing unweighted dispersions to be larger than the
weighted dispersions.

For the pooled benchmark sample, the decline in dispersion is smaller when
observations given equal weight. For example, compared to the 8:8% decline that
is given in Table 3, the 90/10 ratio of tfpq is only 7:2% larger than the 90/10 ratio
of ': The difference, between the unweighted and weighted calculations, is due to
differences in the weight that particular industries get. When observations are given
equal weight, the ready-mix concrete industry (which had a particularly small decline
in productivity dispersion) is relatively more important in the calculations. On the
other hand, when observations are revenue weighted, the gasoline industry (which
has a slightly larger than average decline in productivity dispersion) is relatively more
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Dispersion of tfpq Dispersion of ' Percent Decline
Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD

Boxes, Year�’87 0.475 0.204 0.199 0.409 0.196 0.185 17.3%* 4.1%* 8.1%*
Boxes, Year�’92 0.617 0.318 0.242 0.548 0.278 0.221 13.4%* 15.7%* 10.1%*
Coffee 0.635 0.321 0.257 0.569 0.272 0.249 12.3%* 19.6%* 3.3%
Concrete 0.558 0.275 0.238 0.522 0.260 0.230 7.1%* 5.8%* 3.4%*
Flour 0.404 0.205 0.163 0.396 0.176 0.172 2.0% 17.9%* -5.3%
Gasoline 0.309 0.151 0.147 0.296 0.137 0.141 4.6% 10.7% 4.8%
Milk, Bulk 0.809 0.306 0.316 0.681 0.322 0.303 20.6%* -4.8% 4.4%
Milk, Packaged 0.564 0.284 0.235 0.531 0.262 0.226 6.5%* 8.9%* 4.2%*
Sugar 0.692 0.330 0.313 0.807 0.352 0.352 -13.2%* -6.3% -10.6%*
Yarn 0.620 0.310 0.262 0.629 0.312 0.248 -1.4% -0.6% 5.6%*
Pooled-Benchmark 0.527 0.253 0.227 0.493 0.238 0.219 7.2%* 6.5%* 3.9%*
Pickles 0.890 0.441 0.346 0.962 0.471 0.368 -7.3% -6.2% -5.8%
Sausages 0.800 0.409 0.316 0.730 0.358 0.308 10.0%* 15.3%* 2.5%
Softwood 1.379 0.675 0.490 1.310 0.651 0.489 5.4% 3.6% 0.2%
Wine 1.407 0.735 0.502 1.444 0.779 0.536 -2.6% -5.4% -6.1%
Pooled-Quality 1.028 0.500 0.400 1.021 0.477 0.410 0.7% 4.8% -2.5%

Table A.15. Dispersion of tfpq and '.
Notes: All observations are given equal weight. In the �nal three columns, stars indicate that he difference
between tfpq and ' is statistically signi�cant, at the 5% level (see Web Appendix C for details).

Sample ˇ s:e: Adjusted R2

Boxes, Yr.�’87 0.693 0.116 0.019
Boxes, Yr.�’92 0.538 0.182 0.012
Coffee -0.137 0.092 0.004
Concrete 0.854 0.030 0.184
Flour 0.254 0.093 0.013
Gasoline 0.618 0.058 0.138
Milk, Bulk 0.322 0.152 0.027
Milk, Packaged 0.821 0.041 0.160
Sugar 0.081 0.191 -0.005
Yarn 0.024 0.339 -0.002
Pooled-Benchmark 0.606 0.021 0.072
Pickles -0.038 0.196 -0.007
Sausages 0.006 0.086 -0.002
Softwood -0.273 0.137 0.018
Wine 0.313 0.150 0.010
Pooled-Quality 0.027 0.061 -0.001

Table A.16. Spatial correlation of materials prices.
Notes: The dependent variable is pin

ijt
, and the independent variable is the (revenue-weighted) average of

the pin
i 0jt

for the plants that are within a 250-mile radius of plant i in industry j and year t . Observations
are given equal weight. See Tables 6 and A.3 for the real-revenue-weighted version of this table.

important in the calculations. Note that, weighing observations by revenue does not
cause the within-industry declines in dispersion to be systematically larger or smaller.
For the sample of industries with substantial variation in output quality, there are no
systematic differences between the weighted and unweighted calculations (compare
Table A.2 and the �nal �ve rows of Table A.15).

Finally, Table A.16 presents the unweighted versions of Tables 6 and A.3.
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Productivity
Measure

Total Entry Exit
Net
Entry

Total Entry Exit
Net
Entry

tfpr -1.60 -0.05 0.12 0.08 1.30 0.16 0.22 0.38
tfpq -1.60 -0.02 0.19 0.16 1.30 0.25 0.22 0.47
' -1.60 -0.05 0.17 0.12 1.30 0.17* 0.24 0.41

Table A.17. Aggregate productivity growth decompositions.
Notes: All values are given as percentages, over �ve-year horizons. In the �rst four columns, industries
are assigned importance according to their total revenues. In the last four columns, industries are assigned
importance according to the number of plants. Stars indicate that the value given in the cell is signi�cantly
different than the corresponding value that uses tfpq as the measure of plant productivity. See Web
Appendix C for details.

A.9. An Alternative Growth Decomposition

In this subsection, I reproduce the analysis of Section 3.5, using the decomposition
method of Griliches and Regev (1995). Relative to the Foster, Haltiwanger, and Krizan
(2001) decomposition, the Griliches and Regev (1995) decomposition replaces tfp t�1
with 1

2
tfp t�1 C

1
2
tfp t in the "Entry Effect" and "Exit Effect" terms:
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The results of the alternate decomposition are given in Table A.17. The
magnitudes of the "Net Entry" effect are robust to the decomposition method.

A.10. Correcting for Sample Selection in Decompositions of Industry
Productivity Growth

As mentioned in Section 2.2, plants in the benchmark sample tend to exit and
enter less frequently, compared to plants from their corresponding industries. As a
result, the productivity decompositions of Section 3.5 may underrepresent the role of
entry and exit in generating aggregate productivity growth. In this subsection, I try to
account for this sample selection problem.

Table A.18 presents the aggregate productivity growth decompositions,
corrected for the underrepresentation of entering and exiting plants in the benchmark
sample. For each industry in my benchmark sample, I compute the corrected Entry
(Exit) Effects by dividing by the ratio of the revenue-weighted fraction of entrants
(exiting plants) in the overall sample to the revenue-weighted fraction of entrants
(exiting plants) in the benchmark sample. The correction that I make will magnify
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the share of entrants/exiting plants to the extent that entrants/exiting plants are
underrepresented in the benchmark sample. Speci�cally, the corrected Entry and Exit
Effects are given by:

Entry EffectFHK D
Pr¹i 2 N j i 2 overall sampleº

Pr¹i 2 N j i 2 benchmark sampleº
�

X
i2N\benchmark

�i;t�1 � .tfpit � tfp t�1/

(A.12)

Exit EffectFHK D�
Pr¹i 2 X j i 2 overall sampleº

Pr¹i 2 X j i 2 benchmark sampleº
�

X
i2X\benchmark

�i;t�1 � .tfpi;t�1� tfp t�1/

(A.13)

Entry EffectGR D
Pr¹i 2 N j i 2 overall sampleº

Pr¹i 2 N j i 2 benchmark sampleº
�

X
i2N\benchmark

�it �

�
tfpit �

1

2
tfp t�1 �

1

2
tfp t

�
(A.14)

Exit EffectGR D�
Pr¹i 2 X j i 2 overall sampleº

Pr¹i 2 X j i 2 benchmark sampleº
�

X
i2X\benchmark

�i;t�1 �

�
tfpi;t�1 �

1

2
tfp t�1 �

1

2
tfp t

�
(A.15)

In equations (A.12)-(A.15), FHK denotes the decomposition method of Foster,
Haltiwanger, and Krizan (2001), while GR denotes the decomposition method of
Griliches and Regev (1995).

As in Table 8, I average over the industries in the benchmark sample to arrive
at the aggregate Entry Effect, Exit Effect, and Net Entry Effect. The Net Entry Effect
is less than 0:1 percentage points larger after correcting for the underrepresentation of
entering and exiting plants in the benchmark sample. As in Table 8, the only statistically
signi�cant difference among the three productivity measures is that the role of entry,
which is lager when tfpq, instead of ', is used as the productivity measure.

A.11. Within-Supplier Price Deviations and Shipment Timing

Some of the cross-buyer, within-supplier variation in input prices is potentially
due to differences in the timing of shipments. I run two regressions to explore the
within-supplier variation in input prices. In the �rst regression, the dependent variable
is the logarithm of the difference between the shipment price and the supplier’s average
price;2 the independent variables are indicator variables for the quarter of the shipment.
In the second regression, I average the left- and right-hand side variables from the �rst

2. Note the dependent variable is not quite the same as  hit , as this latter variable combines all of the
shipments made by h to i in year t .
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Productivity
Measure

Weight
Industries By:

Total Entry Exit
Net
Entry

Entry Exit
Net
Entry

tfpr Real Revenues -1.60 -0.06 0.11 0.04 -0.06 0.17 0.11
tfpq Real Revenues -1.60 -0.08 0.20 0.12 -0.07 0.26 0.19
' Real Revenues -1.60 -0.12 0.17 0.05 -0.11 0.23 0.12

tfpr # of Plants 1.30 0.30 0.17 0.47 0.20 0.28 0.49
tfpq # of Plants 1.30 0.40 0.15 0.54 0.30 0.26 0.56
' # of Plants 1.30 0.27* 0.18 0.45 0.18* 0.29 0.47

Decomposition Method Foster et. al Griliches and Regev
Table A.18. Aggregate productivity growth decompositions.
Notes: See equations (A.12)-(A.15). All values are percentages, over �ve-year intervals. When tfpr or
' is the productivity measure, stars indicate that the value given in the cell is signi�cantly different than
the corresponding value that uses tfpq as the measure of plant productivity. See Web Appendix C for a
detailed description of the bootstrapping procedure.

Sample Concrete Boxes Pooled
Quarter 2 0.030 -0.014 -0.011

(0.019) (0.038) (0.035)
Quarter 3 0.031 0.019 0.019

(0.036) (0.028) (0.026)
Quarter 4 0.033 0.041 0.040

(0.030) (0.024) (0.023)
Constant -0.150 0.003 -0.142

(0.020) (0.020) (0.019)
Adjusted R2 0.005 0.008 0.029
N 520 1375 1895

Table A.19. Regression of shipment price (relative to the average for the supplier), against indicator
variables of the quarter of the shipment.
Notes: All observations are weighed by the value of the shipment.

Sample Concrete Boxes Pooled
Quarter 2 0.245 -0.033 0.002

(0.215) (0.058) (0.058)
Quarter 3 0.114 0.011 0.020

(0.228) (0.057) (0.059)
Quarter 4 0.232 0.031 0.058

(0.202) (0.045) (0.048)
Constant -0.331 0.000 -0.200

(0.193) (0.029) (0.073)
Adjusted R2 0.072 0.012 0.080
N 131 190 321

Table A.20. Regression of  it against the fraction of shipment value that i receives in quarter 2, 3,
and 4.
Notes: Observations are weighed by the revenues of plant i .

regression. In particular, I regress  it against the fraction of shipment-value received
by plant i in quarter 2, in quarter 3, and in quarter 4. The results of these regressions
are given in Tables A.19 and A.20. For concrete, within-supplier deviations are smaller
(though not signi�cantly so) for shipments made in the �rst quarter. Overall, shipment
timing explains only a small fraction of the dispersion in materials prices.
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Sample Boxes Concrete Pooled

tfpqit
-0.267*
(0.059)

-0.255*
(0.058)

-0.230*
(0.056)

-0.195*
(0.092)

-0.211
(0.112)

-0.138
(0.106)

-0.253*
(0.050)

-0.243*
(0.048)

-0.211*
(0.047)

 it
0.342*
(0.112)

0.698*
(0.163)

0.407*
(0.118)

Npin;local
it

0.010
(0.029)

0.019
(0.029)

0.022
(0.029)

0.095
(0.088)

-0.010
(0.100)

0.064
(0.082)

0.005
(0.020)

0.008
(0.019)

0.011
(0.020)

N 190 190 190 131 131 131 321 321 321
Adjusted R2 0.125 0.130 0.222 0.050 0.083 0.511 0.105 0.115 0.262
Division F.E.? No Yes Yes No Yes Yes No Yes Yes

Table A.21. Regression results.
Notes: This table presents the coef�cient estimates and robust standard errors, from the regressions de�ned
by equation (23), with the addition of Npin;local

it
as an explanatory variable. The dependent variable in

these regressions is Qpin;CFS
it

. Stars indicate signi�cance at the 5% level.

A.12. Figure 1, for Different Subsamples

Figure 1 decomposes the price distribution of Commodity Flow Survey cement
and paper shipments into two separate components. In the �gure, cement shipments
from 1992, paper shipments from 1992, and paper shipments from 1997 are pooled
together. Figure 2 reproduces the decomposition of Figure 1, separately for each of
these three subsamples.

The main qualitative results of Figure 1 abide for each of the three subsamples.
The within-supplier price distribution is less disperse, compared to the across-supplier
distribution. The distributions are (roughly) unimodal, with the mean and the mode
close to one another.

Of the two industries, the price distributions for paper are more disperse. For
the two paper subsamples, the price distributions are very similar across the two years.

A.13. Including Local Prices in the Regression Defined by Equation (23)

One concern, regarding the regression corresponding to equation (23) is that
division �xed effects may not suf�ciently control for the geographic forces that
generate variation in pinit . Unfortunately, since there are so few observations in the
sample of corrugated box and concrete manufacturers, I cannot include �xed effects
of greater geographic detail. Instead, I include—on the right-hand side of equation
(23)—the average materials price paid by plants that are close to plant i . In particular,
I de�ne Npin;localit as the logarithm of the average (value-weighted) price paid by all
of the establishments, other than i , that are located less than 50 miles from plant i .
Materials prices are spatially correlated for concrete, but not for boxes (i.e., pinit is

correlated to Npin;localit only for the subsample of concrete manufacturers), consistent
with the results of Section 3.3.

Regressions of plants’ materials prices on suppliers’ marginal costs are given
in Table A.21. The estimated coef�cient corresponding to Npin;localit is not signi�cantly
greater than 0, and tends to be somewhat larger for the subsample of ready-mix concrete
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Figure A.1. Value-weighted price distributions. The sample includes all shipments sent by the
cement and paperboard manufacturers that comprise the sample of the regressions de�ned by
equation (23). The top panel includes the sample of paperboard manufacturers, from 1992; the middle
panel includes the sample of cement manufacturers, from 1992; and, the bottom panel includes the
sample of paperboard manufacturers, from 1997.
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manufacturers. Importantly, the coef�cient estimates of the tfpqit and  it terms are
unchanged after including Npin;localit as an explanatory variable.

Appendix B: Construction of the Sample

B.1. Benchmark Sample

The benchmark sample consists of 10 industries (collections of 7-digit products)
for which both inputs and outputs display minimal levels of quality differentiation. The
construction of the sample consists of plants for which the following �ve conditions
hold. First, I discard any plants that have missing data on labor inputs, capital stocks,
electricity bills, or materials bills. Second, I discard any plants that do not �ll out
either the Census of Manufacturers Materials Supplement (containing information
on purchases of intermediate inputs) or the Census of Manufacturers Productivity
Supplement (containing information on products produced). Third, I throw out plants
that have imputed values for quantities of materials purchased or products produced.3

Fourth, I require that the plants in the benchmark sample earn at least half of their
revenues from one of the 10 main industries. Fifth, I discard any plant that has an
output price (de�ned by pout , as in equation (2)), an input price (de�ned by pin, as
in equation (3) or (5)), or a quantity total factor productivity (de�ned by tfpq, as in
equation (6)) that is more than 3 units away than the average for that industry-year.

Industries are de�ned as the collection of 7-digit products in the following
manner.

Coffee consists of two 7-digit products, whole bean coffee (2095111) and
ground coffee (2095115). The units of output are thousands of pounds.

Ready-mix concrete consists of the single 7-digit product (3273000). In 1972
and 1977 some concrete plants were producing a product with a code of 3273011. The
units of output are thousands of cubic yards. Production data do not exist for 1997;
materials data do not exist for 1992 or 1997. Because of this, for the analysis in Section
3, the sample period for ready mix concrete is 1972–1987. The sample period for the
analysis of Section 4, in which I use the Commodity Flow Survey but not the Census

3. White, Reiter, and Petrin (2012) argue that, because of survey nonresponse, on average, 40% of
the non-administrative record plants in the Census of Manufacturers have imputed data. Moreover,
because the Census uses industry averages to impute missing values for shipments, materials purchases,
or other variables, the imputation method causes a downward bias in estimated within-industry
productivity dispersions. The imputation method also biases the measured relationships among plant-
level characteristics. With this in mind, I have chosen to exclude all plants with imputed data on the
quantities of materials purchases or goods shipped. (Unfortunately, imputed-data �ags for other variables—
employment, electricity purchases, etc...—exist only beginning in 2002. However, using data from 2002, I
have checked that there are very few observations with a) non-imputed quantities of materials/output and
b) imputed values for other relevant variables. For 2002, I have also checked that the difference—between
the three productivity measures—is robust to the inclusion/exclusion of observations that have imputed
values for the "other" variables.) Then, at least for my selected sample, I will be able to accurately measure
within-industry dispersions of prices and productivities.
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of Manufacturers’ materials data, is 1992. In addition to the �ve criteria listed in the
�rst paragraph of this subsection, I require ready-mix concrete plants to have positive
purchases of both cement and sand/gravel.

White wheat flour is the combination of the 10 7-digit products: white �our,
shipped for export (2041105 and 2041107); bakers’ and institutional white bread-type
�ours (2041111 and 2041113); bakers’ and institutional soft wheat �our (2041115
and 2041117); family white �our, other than self-rising (2041121 and 2041123); self-
rising family white �our (2044126); and �our shipped to blenders or other processors
(2041128 and 2041129). The units of white wheat �our are 50-pound sacks.

Gasoline is comprised of the following three 7-digit products: motor gasoline
(2911131), distillate fuel oil (2911412), and No. 4 type light fuel oil (2911414). The
units of output are thousands of barrels.

Bulk milk is the combination of �uid whole milk, bulk sales (2026112) and
�uid skim milk, bulk sales (2026115). The units of bulk milk are thousands of pounds.

Packaged milk consists of the following three 7-digit products: �uid whole
milk (2026212), low fat milk (2026223), and skim milk (2026225). The units of output
are thousands of quarts.

Sugar consists of the single 7-digit product, raw cane sugar (2061011). The
units of output are short tons.

Yarn is comprised of the two 7-digit products, spun gray (2281110) and
yarn, spun and �nished in the same establishment (2281187). The units of output
are thousands of pounds.

Corrugated boxes is a combination of nine 7-digit products, with products
being classi�ed by their end use. These end uses are containers of food and
beverages (2653012); carry-out boxes for retail food (2653014); containers of paper
and allied products (2653013); containers of glass, clay, and stone products (2653015);
containers of metal products, machinery, equipment, and supplies (2653016);
containers of electrical machinery, equipment, supplies, and appliances (2653018);
containers of chemicals and drugs, including paints, varnishes, cosmetics, and soaps
(2653021); containers of lumber and wood products, including furniture (2653022);
all other end uses not speci�ed (2653030). From 1972 to 1987, the units of output for
corrugated boxes were thousands of pounds. From 1992 on, the units of output for
corrugated boxes have been thousands of square feet.

Measuring corrugated boxes in terms of area, instead of mass, is somewhat
problematic. Boxes’ densities depend on their �nal use. In particular, the densities of
boxes are lower for those that are used as containers of food, beverages, paper and allied
products, glass, clay, stone, or metal, while the densities are higher for boxes that are
used as containers of machinery, electronics, chemicals, lumber, and other products.
Since the total cost of producing corrugated boxes seems to be more closely related to
the mass—instead of surface area—of the amount produced, measured quantity total
factor productivity for low density box manufacturers began to exceed, in 1992, the
measured quantity total factor productivity of high density boxes.

To mitigate the impact of this measurement problem, I de-meaned, according
to equation (9), plant-level statistics separately for the high-density (those plants that
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Employment Total Value of Shipments N Main
Sample Benchmark Main Ind. Benchmark Main Ind. Benchmark Main Ind. Ind.
Boxes, Yr.�’87 5.399 3.998 9.426 8.404 1820 7742 2653
Boxes, Yr.�’92 5.559 3.998 9.799 8.404 646 7742 2653
Coffee 4.906 3.484 9.920 8.736 300 874 2095
Concrete 3.547 2.350 7.682 6.827 3708 20,956 3273
Flour 4.763 3.010 9.854 7.942 503 2073 2041
Gasoline 6.554 4.867 12.977 11.157 692 1706 2911
Milk, Bulk 3.950 3.441 9.082 8.023 127 7661 2026
Milk, Packaged 5.119 3.441 9.465 8.023 2099 7661 2026
Sugar 5.708 4.901 10.000 9.301 177 301 2061
Yarn 5.942 4.749 9.508 8.645 431 2233 2281
Pooled 4.740 3.128 9.119 7.689 10,503 43,546

Table B.1. Descriptive statistics for the benchmark sample, and for the 4-digit SIC of which each
product is a member.
Notes: Variables are stated in logs. The �nal column refers to the 4-digit SIC of which the product is a
member.

produced output with a product code between 2653016 and 2653030) and low-density
(those plants that produced output with a product code between 2653012 and 2653015)
box manufacturers.4

In Table B.1, I provide some descriptive statistics of the benchmark sample.
The average log employment for plants is 3:93 (i.e., roughly 51 � e3:93 employees
work in the average plant.) Plants that produce ready-mix concrete are one-third
the size of the average benchmark-sample plant, while plants engaged in gasoline
production employ approximately 6:1 (� e5:74�3:93) times as many workers as the
average plant.

Compared to the universe of plants that are in the same 4-digit SIC industry,
the plants in the benchmark sample employ 5:0 (� e4:74�3:13) times as many
employees and have revenues that are 4:2 (� e9:12�7:68) times larger. The difference
is due to the Census Bureau’s survey methodology: the largest plants tend to receive
the survey questionnaires on the products they produce or the materials they consume.

For a particular intermediate input to be included in the analysis, expenditures
of the material input must make up at least 6% of total materials expenditures for
that product group. As the cutoff expenditure share decreases, additional intermediate
inputs are included in the analysis. Setting the cutoff too low results in the inclusion
of intermediate inputs that are purchased only by a few plants, hindering cross-plant
comparisons of materials prices. Setting the cutoff too high means that important
components of plants’ materials prices are ignored. The 6% cutoff seems like a good
compromise between these two considerations.

4. Dropping the "Boxes, Year�1992" subsample does not change any of the results from Section 3. I
�nd it worth the trouble to keep the "Boxes, Year�1992" subsample, since corrugated box manufacturers
purchase one of their main inputs–namely, paperboard–from the manufacturing sector, and thus can be
included in the analysis of Section 4.
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In some instances, I combine groups of similar 6-digit products to form a
given "material input."5 For example, I combine material 131111 (domestic crude
petroleum) and 131112 (foreign crude petroleum). The presumption when deciding
to combine two materials is that the manufacturer is indifferent between the two 6-digit
products. The way in which I combined these 6-digit products is given below.

Green coffee beans (017921) are the sole material input used in the production
of ground/whole bean coffee.

In the production of ready-mix concrete, the two materials are cement (which
was coded as 324101 in 1982 and 1992 and 324102 in other years) and sand/gravel
aggregate (144201).

For white wheat �our, the sole material input is wheat (011111).
In the production of gasoline, I have combined foreign and domestic crude

petroleum into one material input.
For milk (either bulk or packaged), the sole material input is unpasteurized

whole milk (024111).
In the production of raw cane sugar, the sole material input is sugar cane

(013321).
In the production of yarn, the two materials are raw cotton �bers (013101)

and a combination of polyester staple and tow (282425) and acrylic staple and tow
(282426).

Finally, in 1992-1997, the sole material input used in the production of
corrugated boxes is coded 260003 ("Paper and Paperboard"). In 1987, the material
input "Paper/Paperboard" is the combination of 262104 ("Paper, Cellulosic Wadding")
and 262108 ("Paper"). Earlier than this, "Paper/Paperboard" is the combination of
materials 262102, 262103, and 262105.

B.2. Quality Variation Sample

Industries are de�ned as the collection of 7-digit products in the following
manner:

Pickles are a combination of four products: dill pickles (2035211), sour
pickles (2035213), sweet pickles (2035215), and refrigerated pickles (2035219). The
units of output are thousands of gallons.

Sausages are a combination of six products: fresh sausage (2011711 and
2013711); dry or semi-dry sausages (2011717 and 2013717); and frankfurters
(2011721 and 2013721). The units of output are thousands of pounds.

Softwood cut stock is a combination of two product groups: furniture cut stock
(2421711) and industrial cut stock (2421751). The units of output are thousands of
board feet.

5. For 1992 and 1997, a description of the 6-digit material codes can be found by downloading
MC92F7.dbf from the following Census web page: ftp://ftp2.census.gov/econ1992/MC92/.
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Sample Units of Output Material Inputs N

Pickles
1000

Gallons
Cucumbers (43%)
Glass Containers (28%)

145

Sausages
1000

Pounds

Fresh and Frozen Pork (34%)
Fresh and Frozen Beef (30%)
Meat, Unknown Species (13%)

621

Softwood
Cut Stock

1000
Board Feet

Softwood Dressed Lumber (75%)
Softwood Logs (8%)
Hardwood Dressed Lumber (8%)

160

Wine
1000

Gallons

Fresh Grapes (41%)
Purchased Wines (23%)
Glass Containers (19%)

330

Pooled - - 1256
Table B.2. Description of the four industries comprising the Quality Variation sample.
The Material Inputs column gives the inputs that represent greater than 6% of the average plants’ total
material purchases. The percentages that appear in the Material Inputs column are the fraction of materials
expenditures that go to each particular material input.

Wine is a combination of the following three products: white grape wine
(2084012), red grape wine (2084014), and rosé grape wine (2084016). The units of
output are thousands of gallons.

As with the benchmark sample, materials that make up more than 6%
of materials expenditures are included as "priced" materials. A summary of the
characteristics of the Quality Variation sample are given in Table B.2.

Appendix C: Details of the Bootstrapping Exercises

The purpose of this section is to describe, and give the results of, the four
bootstrapping exercises that are employed in Sections 3 and 4. The four bootstrapping
exercises are used to determine a) whether the correlations among certain plant-
level statistics are signi�cantly different from 0, b) whether the dispersion of tfpq
is different from that of ' or tfpr , c) whether the Entry/Exit/Net Entry Effects (as in
equations (16) and (A.11)) are signi�cantly different when tfpq is used instead of '
or tfpr , and d) whether the declines in dispersion that are reported in Table 11 are
signi�cantly more than would be expected by simply adding independent variables.
Below, I explain how each of the bootstrapping exercises is performed, and give the
resulting con�dence intervals.

To determine whether speci�c correlations among plant-level statistics are
different from 0, I take 1000 bootstrapped samples, from the benchmark sample
of 10,503 plant-year observations (or 1256 observations in the case of the Quality
Variation sample). In each bootstrapped sample, the number of plants taken from each
industry-year is the same as in the benchmark sample. After sampling, I de-mean, as
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Sample pin, tfpq pin, ' pin, pout pin, tfpr ', tfpq tfpq, tfpr tfpq, pout

Boxes, Yr.�’87 -0.36,-0.21 0.14,0.31 0.21,0.35 -0.10,0.02 0.83,0.90 0.37,0.48 -0.83,-0.76
Boxes, Yr.�’92 -0.43,-0.27 0.00,0.18 0.20,0.37 -0.16,-0.01 0.88,0.92 0.03,0.20 -0.90,-0.85
Coffee -0.69,-0.20 -0.20,0.29 0.10,0.57 -0.48,0.16 0.77,0.92 0.38,0.74 -0.73,-0.41
Concrete -0.36,-0.26 0.07,0.17 0.23,0.33 -0.18,-0.08 0.89,0.92 0.71,0.77 -0.52,-0.43
Flour -0.48,-0.31 0.34,0.57 0.18,0.43 -0.18,0.15 0.54,0.72 0.00,0.27 -0.78,-0.66
Gasoline -0.48,-0.31 0.02,0.26 0.06,0.26 -0.40,-0.21 0.82,0.89 0.77,0.87 -0.48,-0.27
Milk, Bulk -0.68,-0.13 -0.44,0.14 0.06,0.70 -0.25,0.08 0.93,0.98 0.26,0.67 -0.89,-0.56
Milk, Packaged -0.33,-0.23 -0.02,0.11 0.17,0.28 -0.17,-0.04 0.93,0.95 0.37,0.49 -0.80,-0.69
Sugar -0.22,0.14 0.32,0.61 0.03,0.40 -0.08,0.28 0.78,0.92 0.76,0.93 -0.58,-0.32
Yarn -0.45,-0.17 -0.05,0.40 0.08,0.36 -0.29,-0.05 0.82,0.92 0.36,0.61 -0.84,-0.67
Pooled-Bench. -0.42,-0.31 0.05,0.20 0.18,0.28 -0.30,-0.16 0.85,0.89 0.65,0.74 -0.60,-0.50
Pickles -0.41,0.05 -0.14,0.35 -0.13,0.31 -0.35,0.11 0.93,0.97 0.29,0.60 -0.84,-0.61
Sausages -0.33,-0.04 0.12,0.39 0.06,0.35 -0.09,0.19 0.87,0.92 0.10,0.44 -0.84,-0.73
Softwood -0.66,-0.23 -0.32,0.19 0.22,0.66 -0.35,0.05 0.87,0.94 0.15,0.56 -0.97,-0.89
Wine -0.47,-0.12 0.08,0.50 0.11,0.52 -0.23,0.34 0.71,0.86 0.00,0.48 -0.89,-0.69
Pooled-Quality -0.38,-0.17 0.14,0.36 0.16,0.41 -0.14,0.19 0.82,0.89 0.16,0.42 -0.86,-0.75

Table C.1. Con�dence intervals of correlations among plant-level characteristics.

Benchmark Sample:
pin pout tfpq '

pout 0.180, 0.279
tfpq -0.424,-0.314 -0.599,-0.504
' 0.054,0.200 -0.518,-0.422 0.852,0.890
tfpr -0.303,-0.163 0.149,0.284 0.652,0.736 0.568,0.660

Output Quality Variation Sample:
pin pout tfpq '

pout 0.160,0.407
tfpq -0.385,-0.166 -0.858,-0.165
' 0.137,0.363 -0.733,-0.560 0.819,0.888
tfpr -0.143,0.180 0.241,0.423 0.157,0.418 0.189,0.404

Table C.2. Con�dence intervals of correlations among plant-level characteristics.

in equation (9), and then compute the weighted and unweighted correlations. The 95%
con�dence intervals are provided in Tables C.1, and C.2.6

I follow a similar procedure to determine whether tfpq is signi�cantly more
disperse than tfpr or ': For each (out of 1000) bootstrapped sample, I de-mean
plant-level statistics, as in equation (9), and then compute dispersions (the standard
deviations, the 90/10 ratios, and the 75/25 ratios) of tfpq, tfpr , and '. I then take
the ratio of the dispersion of tfpq and the dispersion of either tfpr or '. The 95%
con�dence intervals are provided in Table C.3. In most cases, the left endpoint of the
con�dence interval is greater than 1, meaning that tfpq is signi�cantly more disperse
than both tpf r and '. For the benchmark, pooled sample, tfpq is signi�cantly more
disperse than ', except when observations are revenue weighted and the interquartile
range is the measure of dispersion.

6. Throughout this section, the con�dence intervals correspond to the revenue-weighted calculations.
Con�dence intervals corresponding to the unweighted calculations are available upon request.
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Ratio of dispersion of tfpq
to dispersion of '

Ratio of dispersion of tfpq
to dispersion of tfpr

Sample 90/10 75/25 SD 90/10 75/25 SD
Boxes,Yr.�’87 1.002,1.078 0.972,1.058 1.002,1.060 1.573,1.757 1.427,1.908 1.654,2.098
Boxes,Yr.�’92 1.022,1.146 1.008,1.123 1.022,1.117 2.534,4.309 2.517,3.853 2.024,3.230
Coffee 1.018,1.783 1.012,1.671 1.018,1.406 0.894,2.182 0.903,2.016 0.947,1.590
Concrete 1.037,1.118 1.015,1.126 1.037,1.069 1.047,1.176 1.026,1.165 1.072,1.154
Flour 0.927,1.180 1.040,1.438 0.927,1.059 1.079,1.892 1.232,1.637 0.992,1.463
Gasoline 0.976,1.170 0.974,1.227 0.976,1.145 0.931,1.146 0.911,1.137 0.980,1.125
Milk, Bulk 0.970,1.401 0.854,1.498 0.970,1.273 0.977,6.031 0.795,4.583 1.166,3.287
Milk, Packaged 1.036,1.110 1.009,1.113 1.036,1.062 1.485,2.072 1.562,1.942 1.375,1.863
Sugar 0.710,1.018 0.689,1.233 0.710,0.962 0.931,1.364 0.834,1.443 1.030,1.275
Yarn 0.824,1.028 0.770,1.027 0.824,1.109 1.220,2.101 1.118,2.017 1.341,2.239

Pooled:
Weighted

1.002,1.168 0.996,1.200 1.002,1.104 1.066,1.227 0.984,1.281 1.123,1.249

Pooled:
Unweighted

1.056,1.091 1.050,1.093 1.028,1.050 1.415,1.515 1.474,1.600 1.303,1.374

Table C.3. Con�dence intervals.
Notes: The con�dence intervals are of a) the ratio of the dispersion of tfpq to the dispersion of tfpr–
given in the left three columns–and b) the ratio of the dispersion of tfpq to the dispersion of '–given in
the right three columns.

Ratio of dispersion of tfpq
to dispersion of '

Ratio of dispersion of tfpq
to dispersion of tfpr

Sample 90/10 75/25 SD 90/10 75/25 SD
Pooled:
Weighted

1.024,1.156 0.975,1.184 1.007,1.083 0.969,1.102 0.932,1.105 1.006,1.092

Pooled:
Unweighted

1.068,1.109 1.054,1.106 1.037,1.060 1.107,1.172 1.078,1.150 1.122,1.173

Table C.4. Con�dence intervals.
Notes: The con�dence intervals are of a) the ratio of the dispersion of tfpq to the dispersion of tfpr–
given in the left three columns–and b) the ratio of the dispersion of tfpq to the dispersion of '–given in
the right three columns.

Table C.4 presents the con�dence intervals, related to the Caves, Christensen,
and Diewert (1982) robustness check of Web Appendix A.5. As in the benchmark
calculations, tfpq is signi�cantly more disperse than ', except when observations are
revenue weighted and the interquartile range is the measure of dispersion. Revenue
productivity is less disperse than quantity productivity for two of the three measures of
dispersion, in the weighted calculations, and one of the three measures of dispersion,
when observations are assigned equal weights. Other differences are not statistically
signi�cant.

And again, I follow a similar procedure to determine whether the
Entry/Exit/Net Entry Effects (as in equations (16) and (A.11)) are signi�cantly
different when tfpq is used instead of ' or tfpr . Again, I take 1000 bootstrapped
samples, where, in each bootstrapped sample, the number of plants taken from each
industry-year is the same as in the benchmark sample. For each bootstrapped sample, I
compute the Entry, Exit, and Net Entry Effects, by plugging in tfpq, tfpr , and ' into
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Measure
Weight
Industries By: Entry Exit Net Entry Entry Exit Net Entry

tfpr Revenues -0.06,0.11 -0.05,0.19 -0.07,0.23 -0.06,0.11 -0.06,0.19 -0.07,0.24
' Revenues -0.02,0.09 -0.06,0.10 -0.05,0.14 -0.02,0.09 -0.07,0.10 -0.05,0.13

tfpr Plants -0.05,0.23 -0.12,0.13 -0.09,0.28 -0.04,0.23 -0.12,0.13 -0.09,0.28
' Plants 0.00,0.16 -0.09,0.05 -0.05,0.15 0.01,0.15 -0.10,0.06 -0.04,0.15

Decomposition Method Foster, Haltiwanger, and Krizan Griliches and Regev
Table C.5. Con�dence intervals.
Notes: The con�dence intervals are of the difference, when tfpq, instead of tfpr /', is used as the
measure of plant productivity, of the Entry Effect, Exit Effect, and Net Entry Effect. These three effects are
de�ned in equations (16) and (A.11).

Include Division
Fixed Effects?

No Yes No Yes

Include
tfpqit?

No No Yes Yes

Sample
Size

Sample

131 Concrete 0.292,0.354 0.342,0.359 0.288,0.352
190 Boxes 0.175,0.185 0.184,0.187 0.175,0.185
321 Pooled 0.200,0.208 0.206,0.209 0.199,0.207
131 Concrete 0.333,0.359 0.286,0.352 0.327,0.359 0.284,0.351
190 Boxes 0.184,0.187 0.174,0.185 0.182,0.187 0.174,0.185
321 Pooled 0.206,0.209 0.199,0.208 0.205,0.209 0.195,0.207

Table C.6. Con�dence intervals.
Notes: The �rst three rows present the con�dence intervals related to the speci�cations that exclude  it
as an explanatory variable. The �nal three rows give the con�dence intervals related to the speci�cations
that include  it .

equations (16) and (A.11). I then compute the difference between the Entry/Exit/Net
Entry Effects when tfpq is used instead of tfpr (or ').

Table C.5 gives the resulting con�dence intervals. In the �rst and the
third rows, 0 lies within each and every con�dence interval: The Entry/Exit/Net
Entry Effects are not signi�cantly different for revenue productivity versus quantity
productivity. On the other hand, when industries are weighed by the number of plants,
the Entry Effect is signi�cantly greater when tfpq, instead of ', is used as the measure
of productivity.

I follow a somewhat different procedure to determine whether the estimated
dispersion declines, as reported in Table 11 are signi�cantly more than would be
expected by simply adding independent variables. I implement the following algorithm
1000 times:

From the sample of plant-year observations, I construct a new variable,

P
�
Qp
in;CFS
it

�
, which is constructed by randomly permuting Qpin;CFSit among the

observations from a given industry-year. I then regress P
�
Qp
in;CFS
it

�
against all the

combinations of right-hand side variables of the regression given in equation (23).
Following these regressions, I compute the revenue-weighted standard deviations of
the residuals. These residuals are stored, for each iteration.
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The 95% con�dence intervals are presented in Table C.6. The �rst three rows
present the con�dence intervals related to the speci�cations that exclude  it as an
explanatory variable. The �nal three rows give the con�dence intervals related to the
speci�cations that include  it . To make things concrete, consider the values given
in the �rst row and penultimate column. To construct these two values, I repeatedly

regress random permutations of P
�
Qp
in;CFS
it

�
against tfpqit , and then store the

standard deviation of the residuals from each regression. The smaller value equals
the 2.5-percentile standard deviation, and the larger value equals the 97.5-percentile
standard deviation.

Additional References

White, T. Kirk, Jerome P. Reiter, and Amil Petrin (2012). "Plant-level Productivity
and Imputation of Missing Data in U.S. Census Manufacturing Data." NBER
Working Paper No. 17816.
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