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How Important Are Sectoral Shocks?†

By Enghin Atalay*

I quantify the contribution of sectoral shocks to business cycle fluc-
tuations in aggregate output. I develop and estimate a multi-indus-
try general equilibrium model in which each industry employs the 
material and capital goods produced by other sectors. Using data on 
US industries’ input prices and input choices, I find that the goods 
produced by different industries are complements to one another as 
inputs in downstream industries’ production functions. These com-
plementarities indicate that industry-specific shocks are substantially 
more important than previously thought, accounting for at least half 
of aggregate volatility. (JEL D12, D24, E23, E32, L14)

What are the origins of business cycle fluctuations? Do idiosyncratic micro 
shocks—disturbances at individual firms or industries—have an important 

role in explaining short-run macroeconomic fluctuations? Or are shocks that prevail 
on all industries the predominant source?

I address these questions by constructing and estimating a multi-industry dynamic 
general equilibrium model in which both common and industry-specific shocks 
have the potential to contribute to aggregate output volatility. I find that sectoral 
shocks are important, accounting for considerably more than half of the variation in 
aggregate output growth.

A challenge in identifying the relative importance of industry-specific shocks is 
that, because of input-output linkages, both aggregate and industry-specific shocks 
have similar implications for data on industries’ sales. To see why, consider the fol-
lowing two scenarios. In the first, some underlying event (e.g., a surprise increase in 
the federal funds rate) reduces the demand faced by all industries, including the auto 
parts manufacturing, steel manufacturing (a supplier of auto parts), and auto assem-
bly industries. In the second scenario, a strike occurs in the auto parts manufacturing 
industry, which temporarily reduces the demand faced by sheet metal manufactur-
ers, and increases the cost of establishments engaged in auto assembly. Even if 
industry-specific shocks are independent of one another, input-output linkages will 
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induce co-movement in these industries’ output and employment growth rates, just 
as in the first scenario. Intuitively, though, the more correlation across industry out-
put growth that is observed, the more likely it is that common shocks are responsible 
for aggregate fluctuations.

But the extent to which industry activity co-moves depends on how easily consum-
ers can substitute across the goods they consume, and how easily the firms within an 
industry can substitute across different factors of production. A particular amount of 
observed co-movement in output could result from one of two reasons. Production 
elasticities may be low, and common shocks relatively unimportant. Alternatively, 
elasticities of substitution may be large, and common shocks relatively important. 
The second challenge, then, emerges from the paucity of reliable, precise estimates 
of how easily industries can substitute across their inputs.1

In this paper, I confront these two related challenges sequentially. First, using data 
from the 1997 to 2013 BEA (Bureau of Economic Analysis) Annual Input-Output 
Tables, I estimate the relevant elasticities of substitution. In the data, the expenditure 
share of an industry on particular intermediate inputs are both volatile and positively 
correlated to the input’s price. From these patterns, I estimate a relatively low value 
for the elasticity of substitution (which I call ​​ε​M​​​) among the intermediate inputs 
produced by different upstream industries: My point estimates of ​​ε​M​​​ are consistently 
lower than ​0.2​, always significantly less than ​1​. In other words, different intermedi-
ate inputs are highly complementary to one another.

Second, armed with estimates of ​​ε​M​​​ and the model’s other salient elasticities 
of substitution, I construct a multi-industry dynamic general equilibrium model 
with which to infer industry productivity shocks. This model is an extension of that 
introduced in Foerster, Sarte, and Watson (2011), allowing for sectoral production 
functions that have non-unitary elasticities of substitution across inputs. Using the 
model, in conjunction with data on industries output levels from 1960–2013, I back 
out the productivity shocks that each industry experienced over this sample period. 
I then extract the common component of these productivity shocks.

From here, I compute the fraction of the variation in aggregate output growth 
that can be explained by industry-specific (versus common) shocks. I find that most 
of the variation in aggregate output growth is attributable to the industry-specific 
components, ​83​ percent in my benchmark estimates. When I impose unitary elas-
ticities of substitution on my model, I estimate that ​21​ percent of the variation in 
output volatility comes from industry-specific shocks. In sum, these results indicate 
that sectoral shocks are more important than previously thought, and that the differ-
ence is largely due to past papers’ imposition of a unitary elasticity of substitution 
across different inputs in sectoral production functions. These results are robust to 
countries, industry classification schemes, treatment of trends, and other modeling 
choices.

This paper resolves the hypothesis, first advanced in Long and Plosser (1983), 
that independent industry-specific shocks generate patterns characteristic of mod-
ern business cycles. Models of business cycles typically portray fluctuations as the 

1 I discuss existing estimates of the relevant elasticities in Section II. 
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result of economy-wide, aggregate disturbances to production technologies and 
preferences. These disturbances, however, are difficult to justify independently, and 
may simply represent “a measure of our ignorance.”2 Given the results of the current 
paper, future research on the sources of business cycle fluctuations would benefit 
from moving beyond the predominant one-sector framework.

Related Literature.—The current paper falls within the literature on multi-industry 
real business cycle models initiated by Long and Plosser (1983). Long and Plosser 
present a model in which the economy is composed of a collection of perfectly com-
petitive industries. Each industry produces its output by employing a combination 
of labor and intermediate inputs. The intermediate input bundles of each industry 
are, in turn, combinations of goods that are purchased from other industries. Long 
and Plosser (1983) and others in this literature (e.g., Horvath 1998 and 2000; Dupor 
1999; Acemoglu et al. 2012; and Acemoglu, Ozdaglar, and Tahbaz-Salehi 2017) 
use this framework to argue that idiosyncratic shocks to industries’ productivities, 
by themselves, have the potential to generate substantial aggregate fluctuations.3 
These papers, however, do not allow for aggregate shocks.They are not attempting 
to assess the relative importance of industry-specific and aggregate shocks.

Uniquely among the aforementioned papers, the model in Horvath (2000) accom-
modates non-unitary elasticities of substitution in consumers’ preferences (across 
goods) and in the production of the intermediate input bundle (across inputs pur-
chased from upstream industries).4 His is the first article to articulate that lower 
elasticities of substitution “engender greater sectoral comovement… by reducing 
the ability of sectors to avoid the shocks of their input supplying sectors” (p. 83). A 
key difference between the current paper and Horvath (2000) is that the earlier paper 
does not attempt to estimate the values of these elasticities of substitution, nor does 
it seek to identify the role of common versus sectoral shocks in generating aggregate 
fluctuations.

So, compared to the Long and Plosser literature, the current paper makes three 
advances. First, I extend Foerster, Sarte, and Watson (2011)’s identification scheme 
to accommodate flexible substitution patterns in consumers’ preferences and indus-
tries’ production technologies. Second, using data on industries’ input usage and 
input prices, I estimate these production elasticities. Together, these two contri-
butions are necessary to arrive at the paper’s main result, that industry-specific 
shocks play a much larger role in generating aggregate volatility than previously 
believed. As a tertiary contribution, I make a sequence of smaller advances. I allow 

2 This phrase was coined by Abramovitz (1956), when discussing the sources of long-run growth, but applies 
to our understanding of short-run aggregate fluctuations, as well. More recently, Summers (1986) and Cochrane 
(1994) have argued that it is a priori implausible that aggregate shocks can exist at the scale needed to engender the 
business cycle fluctuations that we observe. 

3 Among these papers, Dupor (1999) is exceptional. Instead of arguing that industry-specific shocks have the 
potential to produce business cycle fluctuations, he does the converse. He provides conditions on the input-output 
matrix under which industry-specific shocks are irrelevant. 

4 There are papers in other fields that focus more closely on these elasticities. Johnson (2014) and Boehm, 
Flaaen, and Pandalai-Nayar (2015a) study the transmission of shocks across international borders as a mechanism 
for generating cross-country co-movement and examine how the extent of model-predicted co-movement varies 
with production and preference elasticities. 

shocks.They
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for consumption good durability, consider a dataset that covers the entire economy,5 
and examine data from several developed economies.6

Outline.—In the remainder of the paper, I spell out the multi-sector real business 
cycle model (Section I); estimate how easily industries can substitute across inputs 
(Section II); apply these estimated elasticities to the real business cycle model to 
re-examine the relative importance of industry-specific shocks (Section III); and 
conclude (Section IV). In Appendix A, I provide some additional details on the 
datasets used in the paper.7

I.  Model

In this section, I present a multi-industry general equilibrium model. This is the 
simplest model that can be used to compare the importance of industry-specific and 
aggregate disturbances, and to estimate the production elasticities of substitution. 
The model is populated by a representative consumer and ​N​ perfectly competitive 
industries. I first describe the representative consumer’s preferences, then the produc-
tion technology of each industry, and finally the evolution of the exogenous variables.

A. Preferences

The consumer has balanced growth-consistent preferences over leisure and the 
services provided by the ​N​ different consumption goods.8

The preferences of the consumer are given by the following utility function:

(1)	​ U  = ​  ∑ 
t=0

​ 
∞

 ​​ ​β​​ t​​[log​[​​(​ ∑ 
J=1

​ 
N

  ​​ ​ξ​ J​ 
​ 1 __ ​ε​D​​ ​​ ​​(​C​tJ​​)​​​ ​ 

​ε​D​​−1 ____ ​ε​D​​ ​ ​)​​​ 
​  ​ε​D​​ ____ ​ε​D​​−1 ​

​]​ − ​  ​ε​LS​​ _____ ​ε​LS​​ + 1 ​ · ​​(​ ∑ 
J=1

​ 
N

  ​​ ​L​tJ​​)​​​ 
​ ​ε​LS​​+1 ____ ​ε​LS​​ ​

​]​.​

The demand parameters, ​​ξ​J​​​ , reflect the time-invariant differences in the impor-
tance of industries’ goods in the consumer’s preferences; ​​C​tJ​​​ equals the final 
consumption purchases on good/service ​J​ at time ​t​. The elasticities of substitution 

5 Foerster, Sarte, and Watson (2011) is unique in its application of the Federal Reserve Board’s dataset on indus-
trial production, a dataset that spans only the goods-producing sectors of the US economy. Other papers (e.g., Long 
and Plosser 1983, Horvath 2000, and Ando 2014), employ datasets that cover the entire economy. 

6 A parallel literature attempts to gauge the relative importance of industry-specific shocks by estimating vector 
autoregressions (see Long and Plosser 1987, Stockman 1988, Shea 2002, and Holly and Petrella 2012). Yet another 
line of research constructs simple summary statistics of shocks to the largest firms or industries, relates these sum-
mary statistics to aggregate output movements, and in this way establishes the importance of micro shocks. Gabaix 
(2011) defines the granular residual—changes in productivity to the largest 100 firms—and shows that this statistic 
explains approximately one-third of the variation in GDP (see also di Giovanni, Levchenko, and Mejean 2014). 
Along these lines, Carvalho and Gabaix (2013) show that a summary statistic, one which measures the relative sizes 
of industries with different productivity volatilities, can help explain time-varying aggregate volatility. 

7 In the online Appendices, I re-estimate one of the model’s elasticities of substitution using plant-level data on 
manufacturers’ input choices in online Appendix B, describe the datasets from other countries (online Appendix C), 
report on a sequence of robustness checks (online Appendices D and E), and characterize the solution of Section I’s 
model (online Appendix F). 

8 In online Appendix F, I extend the model to accommodate durability of certain consumption goods. This turns 
out to increase moderately the estimated importance of sectoral shocks for certain parameter configurations, and has 
no noticeable effect for others; see online Appendix E. 
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parameterize how easily the representative consumer substitutes across the different 
consumption goods (​​ε​D​​​) and how responsive the consumer’s desired labor supply is 
to the prevailing wage (​​ε​LS​​​).9

B. Production and Market Clearing

Each industry produces a quantity (​​Q​tJ​​​) of good ​J​ at date ​t​ using capi-
tal (​​K​tJ​​​), labor (​​L​tJ​​​), and intermediate inputs (​​M​tJ​​​) according to the following 
constant-returns-to-scale production function:

(2) ​ ​Q​tJ​​ = ​A​tJ​​  · ​​[​​(1 − ​μ​J​​)​​​ ​ 
1 __ ​ε​Q​​ ​​ ​​(​​(​ ​K​tJ​​ ___ ​α​J​​ ​)​​​ 

​α​J​​

​​​(​  ​L​tJ​​ ____ 
1 − ​α​J​​

 ​)​​​ 
1−​α​J​​

​)​​​ 
​ ​ε​Q​​−1 ____ ​ε​Q​​ ​

​ + ​​(​μ​J​​)​​​ ​ 
1 __ ​ε​Q​​ ​​ ​​(​M​tJ​​)​​​ ​ 

​ε​Q​​−1 ____ ​ε​Q​​ ​ ​]​​​ 

​  ​ε​Q​​ ____ ​ε​Q​​−1 ​

​.​

The parameters ​​μ​J​​​ and ​​α​J​​​ reflect long-run averages in each industry’s usage of 
intermediate inputs, labor, and capital. These parameters will eventually be inferred 
from the factor cost shares of each industry. The variable ​​A​tJ​​​ is the factor-neutral 
of industry ​J​ at time ​t​. For now, these productivity terms can be correlated, across 
industries, in any arbitrary fashion. The parameter ​​ε​Q​​​ dictates how easily factors of 
production are substituted.10

The evolution of capital, for each industry ​J​, is given in equation (3):

(3)	​ ​K​t+1, J​​  = ​ (1 − ​δ​K​​)​ ​K​tJ​​ + ​X​tJ​​.​

The capital stock is augmented via an industry-specific investment good, ​​X​tJ​​​ , 
and depreciates at a rate ​​δ​K​​​ that is common across industries. The industry-specific 
investment good is produced by combining the goods produced by other industries. 
The ​​Γ​ IJ​ X ​​ indicate how important industry ​I​ is in the production of the industry ​J​ spe-
cific investment good, while ​​ε​X​​​ parameterizes the substitutability of different inputs 
in the production of each industry’s investment bundle:

(4)	​ ​X​tJ​​  = ​​ (​ ∑ 
I=1

​ 
N

 ​​ ​​(​Γ​ IJ​ X ​)​​​ ​ 
1 __ ​ε​X​​ ​​ ​​(​X​t, I→J​​)​​​ ​ 

​ε​X​​−1 ____ ​ε​X​​ ​ ​)​​​ 
​  ​ε​X​​ ____ ​ε​X​​−1 ​

​.​

9 Horvath (2000) and Kim and Kim (2006) use a more flexible specification regarding the disutility from sup-
plying labor. In their specification, the second term in the period utility function is replaced by

	 ​−​  ​ε​LS​​ _____ ​ε​LS​​ + 1 ​ · ​​(​ ∑ 
J=1

​ 
N

  ​​ ​​(​L​tJ​​)​​​ ​ 
τ+1 ___ τ ​ ​)​​​ 

​  τ ___ τ+1
 ​ ​ ​ε​LS​​+1 ____ ​ε​LS​​ ​

​.​

The idea behind this specification is to “capture some degree of sector specificity to labor while not deviating 
from the representative consumer/worker assumption” (Horvath 2000, 76). As it turns out, neither the volatility of 
aggregate economic activity nor the covariances of output across industries are particularly sensitive to the value 
of ​τ​ (see Table 9 of that paper). Moreover, since wages and hours are not among the observable variables that I am 
trying to match, the data that I employ in the following sections would have trouble identifying ​τ​. For these reasons, 
I use the simpler specification of the disutility from labor supply. 

10 In a robustness check (see column 2 of Table 4), I will consider labor-augmenting instead of TFP shocks. With ​​
ε​Q​​​ equal to 1, shocks to labor-augmenting productivity and TFP cannot be separately identified. With non-unitary 
elasticities of substitution, the paper’s main results could a priori be sensitive to how the exogenous productivity 
term affects output. 
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Analogously, the intermediate input bundle of industry ​J​ is produced through a 
combination of the goods purchased from other industries:

(5)	​ ​M​tJ​​  = ​​ (​ ∑ 
I=1

​ 
N

 ​​ ​​(​Γ​ IJ​ M​)​​​ ​ 
1 __ ​ε​M​​ ​​ ​​(​M​t, I→J​​)​​​ ​ 

​ε​M​​−1 ____ ​ε​M​​ ​ ​)​​​ 
​  ​ε​M​​ ____ ​ε​M​​−1 ​

​.​

In equation (5), ​​ε​M​​​ parameterizes the substitutability of different goods in the 
production of each industry’s intermediate input bundle. The ​​Γ​ IJ​ M​​ indicate how 
important industry ​I​ is in the production of the industry ​J​ specific intermediate input.

To emphasize, the parameters ​​Γ​ IJ​ M​​ , ​​Γ​ IJ​ X ​​ , ​​α​J​​​ , and ​​μ​J​​​ are time invariant. As such, 
movements in the share of ​J​ ’s expenditures spent on different factors of production 
are due, only, to the shocks to industries’ productivity.

From the cost-minimization condition of the industry ​J​ representative firm, the 
relationship between the intermediate input cost share of industry ​J​ and the industry ​
J​ specific intermediate input price (denoted ​​P​ tJ​ in​​) is log-linear, with slope ​1 − ​ε​Q​​​:11

(6)	​ Δ log​(​ ​P​ tJ​ in​ · ​M​tJ​​ ________ ​P​tJ​​ · ​Q​tJ​​
 ​)​  = ​ (1 − ​ε​Q​​)​ · Δ log​(​ ​P​ tJ​ in​ ___ ​P​tJ​​

 ​)​ + ​(​ε​Q​​ − 1)​ · Δ log ​A​tJ​​.​

A similar set of calculations yields the following relationship that describes 
changes in an industry’s purchases of a specific intermediate input:

(7)	​ Δ log​(​ 
​P​tI​​ ​M​t, I→J​​ _________ 
​P​ tJ​ in​ ​M​tJ​​

 ​ )​  = ​ (1 − ​ε​M​​)​ · Δ log​(​ ​P​tI​​ ___ 
​P​ tJ​ in​

 ​)​.​

When ​​ε​Q​​  = ​ ε​M​​  =  1​, as assumed in previous papers, an industry’s input cost 
shares are constant, independent of input prices, a prediction that I will show to be 
at odds with the data.

Finally, the market-clearing condition for each industry states that output can be 
used for consumption, as an intermediate input, or to increase one of the ​N​ capital 
stocks:

(8)	​ ​Q​tI​​  = ​ C​tI​​ + ​ ∑ 
J=1

​ 
N

  ​​​(​M​t, I→J​​ + ​X​t, I→J​​)​.​

11 The equivalence between sales and costs in the denominator of the left-hand side of equation (6) comes from 
the assumption that each industry is perfectly competitive, with a constant returns-to-scale production function.

To derive equation (6), take first-order conditions of equation (2) with respect to intermediate input purchases:

	​​ P​ tJ​ in​   = ​ P​tJ​​ · ​ 
∂ ​Q​tJ​​ _____ ∂ ​M​tJ​​

 ​

	 = ​ P​tJ​​ · ​​(​A​tJ​​)​​​ ​ 
​ε​Q​​−1 ____ ​ε​Q​​ ​ ​ ​​(​M​tJ​​)​​​ −​ 1 __ ​ε​Q​​ ​​ ​​(​μ​J​​ · ​Q​tJ​​)​​​ ​ 

1 __ ​ε​Q​​ ​​ ;

	 ​​(​P​ tJ​ in​)​​​ 
​ε​Q​​
​  = ​​ (​P​tJ​​)​​​ ​ε​Q​​​ ​​(​A​tJ​​)​​​ ​ε​Q​​−1​ ​​(​M​tJ​​)​​​ −1​ ​μ​J​​ · ​Q​tJ​​.​

Taking logs, rearranging, and computing the difference across two adjacent periods gives equation (6). 
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C. Evolution of the Exogenous Variables and the Model Filter

Using ​​A​t​​​ to denote the vector of productivity levels in the ​N​ industries,  
​​(​A​t1​​,  … , ​A​tN​​)​′​ , I specify the evolution of productivity as a geometric random walk:

(9)	​ log ​A​t+1​​  =  log ​A​t​​ + ​ω​ t+1​ A ​ .​

For now, the productivity shocks’ covariance matrices are left unspecified. I will 
add some structure to these matrices in Section III.

As in Foerster, Sarte, and Watson (2011), in a competitive equilibrium, the vector 
of industries’ output growth rates admits a VARMA(1, 1) representation. Thus, the 
evolution of output can be written as

(10)	​ Δ log ​Q​t+1​​  = ​ Π​1​​ Δ log ​Q​t​​ + ​Π​2​​ ​ω​ t​ A​ + ​Π​3​​ ​ω​ t+1​ A ​ .​

The ​N × N​ matrices ​​Π​1​​​ , ​​Π​2​​​ , and ​​Π​3​​​ are functions of the model parameters. I 
solve for these matrices in online Appendix F.

Solving equation (10) for ​​ω​ t+1​ A ​ ​ yields the filter

(11)	​ ​ω​ t+1​ A ​   = ​​ (​Π​3​​)​​​ −1​ Δ log ​Q​t+1​​ − ​​(​Π​3​​)​​​ −1​ ​Π​1​​ Δ log ​Q​t​​ − ​​(​Π​3​​)​​​ −1​ ​Π​2​​ ​ω​ t​ A​.​

With some initial condition for the productivity shock (e.g., ​​ω​ 0​ A​  =  0​), one could 
iteratively use data on sectoral growth rates to infer the productivity shocks at each 
point in time. I will apply this procedure in Section III. But first, I must determine 
values for the model’s elasticities of substitution. The example in the following sub-
section explains why.

D. Why Do the Elasticities Matter?12

Before turning to the empirical analysis, I work through a special case of the 
model. This special case yields a relatively simple set of expressions for the relation-
ship between the model parameters, the exogenous productivity shocks, and each 
industry’s output. With this relationship in hand, I then discuss the intuition behind 
why imposing unitary elasticities of substitution may lead one to understate the role 
of industry-specific shocks.

Compared to the benchmark model, I make a number of simplifying assump-
tions. I assume that (i) all goods depreciate fully each period; (ii) there is no phys-
ical capital in production; (iii) each industry has identical production functions; 
(iv)  the consumer’s preference weight is the same for each of the ​N​ goods; and 
(v) the input-output matrix has ​1/N​ in each entry. Relaxing these assumptions would 
not overturn the example’s main message, that higher elasticities of substitution 

12 This subsection is related to the technical Appendix of Carvalho and Gabaix (2013). The main difference, 
besides assumptions (a)–(e), is that Carvalho and Gabaix impose that ​​ε​M​​  =  1​ and allow for some adjustment costs 
to aggregate labor. 
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generate less correlated output for a given set of correlations among the underlying 
productivity shocks.

The overall aim of the paper’s model is to use data on industries’ output to recover 
the degree to which productivity shocks are correlated across industries. If industry 
output data indicate that productivity shocks are correlated, then aggregate shocks 
will be assigned to play a primary role in generating industries’ output (and, corre-
spondingly, aggregate output) fluctuations. With this in mind, in online Appendix 
F.6, I work out the following (log-linear, around the point at which ​​A​I​​  =  1​ for all ​I​)  
approximation for each industry’s output as a function of the productivity in each 
industry:

(12) ​ log ​Q​tI​​  ≈  log ​ 1 __ 
N ​ + ​  1 ____ 

1 − μ ​ log ​(​  1 ____ 
1 − μ ​)​ + ​​​(μ​ε​M​​ + ​(1 − μ)​ ​ε​D​​)​ 

 
 


​​ 

①

​ ​  log ​A​tI​​

	 + ​ 1 __ 
N ​ ​​​[​​(​  1 ____ 

1 − μ ​)​​​ 
2
​ − ​(μ​ε​M​​ + ​(1 − μ)​ ​ε​D​​)​]​  

 
  



​​  

②

​ ​ ​  ∑ 
J=1

​ 
N

  ​​ log ​A​tJ​​​.

Equation (12) is helpful as it allows one to relate the covariance of industries’ gross 
output as a function of industries’ productivity shocks, and thus describes how one 
could recover the correlation of productivity shocks from data on gross output. The 
terms ① and ② in equation (12) respectively specify the impact of industry-specific 
and common productivity changes on industry ​I​ ’s output level. Term ① is increasing 
in the two elasticities of substitution, ​​ε​D​​​ and ​​ε​M​​​ , and is minimized and equal to 0 
when ​​ε​D​​  = ​ ε​M​​  =  0​. In other words, regardless of the underlying correlation of the 
productivity terms, when production and preference elasticities are low, observed 
output will tend to strongly co-move. In contrast, in economies with larger produc-
tion and preference elasticities, output will tend to co-move less for a given degree 
of correlation in the ​A​ terms.

In sum, the main takeaway from this simple example is that a given amount of 
observed output co-movement could arise either from low elasticities of substitution 
and correlated shocks or, alternatively, high elasticities of substitution and relatively 
uncorrelated shocks. So, to properly assess how important common versus inde-
pendent shocks are, I must have reliable estimates parameterizing consumers’ and 
firms’ ease of substitution. This is the task to which I turn in the following section.

Before doing so, with the aim of providing the reader with some intuition, I 
briefly address a recurring question that I received while presenting this paper: Is 
the amplification of industry-specific shocks—where amplification is defined, here, 
as the aggregate output response following a shock in an individual sector—more 
severe with complementarities in production? On the one hand, when inputs are 
more complementary a (negative) productivity shock to a supplying industry (e.g., 
Steel) will lead to larger decreases in output for downstream industries (e.g., Motor 
Vehicles, Construction, etc…). On the other hand, the output decline in the indus-
try experiencing the productivity shock will be smaller when its output is more 
complementary to the output of other industries. These two countervailing effects 
balance each other out in this simple example. Indeed, this must be the case, as the 
simple example of this subsection falls within the class of models studied in Hulten 
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(1978) and Acemoglu et al. (2012). For this class of models, the aggregate impact 
of shocks to an individual sector is only a function of the sector’s gross output share; 
to a first-order, the elasticities of substitution do not matter. Instead, the elasticities 
matter because they alter the way in which co-movement in fundamental shocks 
map to co-movement in observable data.

II.  Estimates of the Production Elasticities

In this section, I estimate the model’s key elasticities of substitution. With this goal 
in mind, I will apply industries’ cost-minimization conditions, as given in equations 
(6) and (7), to estimate ​​ε​M​​​ and ​​ε​Q​​​. Recognizing the endogeneity of relative prices 
on the right-hand sides of these equations, I follow Shea (1993), Young (2014), and, 
especially, Acemoglu, Akcigit, and Kerr (2016) and use short-run industry-specific 
demand shifters as instruments. These shifts in demand arise from changes in mili-
tary spending.

For this section, I use data from the BEA’s GDP by Industry and Input-Output 
Accounts data spanning 1997 to 2013. The main variables that I construct from 
these tables are changes in (i) industry ​J​ ’s output price index, ​Δ log ​P​tJ​​​; (ii) its 
intermediate input price index, ​Δ log ​P​ tJ​ in​​; (iii) its intermediate input cost share,  
​Δ log​((P​ tJ​ in​ ​M​tJ​​)/​(P​tJ​​ ​Q​tJ​​​)); and (iv) the fraction of industry ​J​ ’s intermediate input 
cost shares that are due to purchases from industry ​I​ , ​Δ log((​P​tI​​ ​M​t, I→J​​)/(​P​ tJ​ in​ ​M​tJ​​​)).  
So that I may combine production elasticity estimates with Dale Jorgenson’s KLEMS 
data (which will be used in the following section), I collapse the 71 industries in the 
BEA data down to 30 industries. Appendix A contains a detailed description of the 
construction of the variables used in this section.

For 4 of the 30 industries, Figure 1 presents the relationship between ​ 
Δ log​((P​tI​​ ​M​t, I→J​​)/​(P​ tJ​ in​ ​M​tJ​​​)) and ​Δ log​(​P​tI​​/​P​ tJ​ in​)​​ for ​J​ ’s most important supplier 
industry. As an example, for the furniture industry, which is depicted in panel B, I 
plot the furniture industry’s intermediate input expenditure share of lumber on the 
y-axis, and the price of lumber relative to the price of furniture’s intermediate input 
bundle on the x-axis. The numbers on the plot give the last two digits of the year ​t​.  
The main takeaway is that the share of a particular input among total intermediate 
input expenditures is positively correlated to the price of that input (relative to other 
intermediate inputs); this relationship is statistically significant for three out of the 
four industries (nonmetallic minerals being the exception). Absent any omitted vari-
ables, equation (7) would yield an unbiased estimate of ​1 − ​ε​M​​​: The slope of ​Δ log​
((P​tI​​ ​M​t, I→J​​)/(​P​ tJ​ in​ ​M​tJ​​))​ on ​Δ log​(​P​tI​​/​P​ tJ​ in​)​​ , averaging across the four plotted indus-
tries, is ​0.85​, which would yield an estimate of ​​ε​M​​  =  0.15​.13

Similarly, ​​ε​Q​​​ , the elasticity of substitution between intermediate inputs and value 
added, could be identified off of the slope of the relationship between changes in 
the intermediate input cost share, ​Δ log​((P​ tJ​ in​ ​M​tJ​​)/​(P​tJ​​ ​Q​tJ​​))​, and the relative price 
of intermediate inputs, ​Δ log​(​P​ tJ​ in​/​P​tJ​​)​​. Figure 2 plots this. All else equal, when ​​ε​Q​​​ 
is less than 1, higher intermediate input prices are correlated with larger fractions 

13 These four industries are broadly representative of those throughout the sample. In online Appendix D, I 
depict this same relationship for all 30 industries. 
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Figure 1. Relationship between Changes in Intermediate Input Purchases and Intermediate Input Prices

Notes: For each downstream industry, ​J​ , I take the most important (highest average intermediate input expendi-
ture share) supplier industry, ​I. The x-axis of each panel gives ​Δ log​(​​​P​​tI​​​​​/ ​​​P​ tJ​​​ 

in​​​).​ The y-axis gives, for each industry, 
changes in the fraction of industry ​J​ ’s intermediate input expenditures that go to industry ​I.
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Notes: For each industry, ​J​ , I plot the relationship between changes in its cost share of intermediate inputs on the 
y-axis, and changes in the difference between the price of the intermediate input bundle and the marginal cost of 
production on the x-axis.
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of expenditures spent on intermediate inputs. For many, but certainly not all indus-
tries, this seems to be the case. The slope between ​Δ log​(​(​P​ tJ​ in​ ​M​tJ​​)​/​(​P​tJ​​ ​Q​tJ​​)​)​​ and  
​Δ log​(​P​ tJ​ in​/​P​tJ​​)​​ is statistically distinct from 0 for 12 of the 30 industries: negative for 
3 of the commodity-related industries—petroleum/gas extraction, petroleum refin-
ing, and primary metal manufacturing—and positive for 9 other industries. Overall, 
the slope of this line, for the average industry equals ​0.4​.

With the aim of more formally estimating ​​ε​Q​​​ and ​​ε​M​​​ , combine the cost- 
minimization conditions of each industry given in equations (6) and (7):

(13)	​ Δ log​(​ 
​P​tI​​ ​M​t, I→J​​ _________ ​P​tJ​​ ​Q​tJ​​

 ​ )​  = ​ ϕ​t​​ + ​(​ε​M​​ − 1)​ ​(Δ log ​P​ tJ​ in​ − Δ log ​P​tI​​)​

	 + ​(​ε​Q​​ − 1)​ ​(Δ log ​P​tJ​​ − Δ log ​P​ tJ​ in​)​ + ​η​t, IJ​​​.

Shifts in relative productivity, which are correlated with changes in relative prices 
and enter the error term in equation (13), may lead to biased estimates of the produc-
tion elasticities. According to the model presented in Section I, shocks to industries’ 
final demand would alter industries’ demand for specific factors only through their 
effects on relative prices. I use a set of instruments from Acemoglu, Akcigit, and 
Kerr (2016) to capture these shifts in final demand.14

I define a set of three instruments, which exploit annual variation in military 
spending and heterogeneity in the extent to which different industries are suppliers 
to, either directly or indirectly, the military. They are defined as

(14) ​​ military spending shock​tJ​​  ≡ ​ ∑ 
​I ′ ​
​ ​​ Output​%​1997, J→I′​​

	 × ​​1997, I′→military​​ · Δ log​(​Military Spending​t​​)​,​

(15) ​​ military spending shock​tI​​  ≡ ​ ∑ 
​I ′ ​
​ ​​ Output​%​1997, I→I′​​

	 × ​​1997, I′→military​​ Δ log​(​Military Spending​t​​)​​, 

and

(16) ​​ military spending shock​tJ’s suppliers​​  ≡ ​ ∑ 
I
​ ​​ ​ 
​P​tI​​ ​M​t, I→J​​ _________ 
​P​ tJ​ in​ ​M​tJ​​

 ​ ​ military spending shock​tI​​​.

With these three separate instruments, I aim to capture demand shifts that lead, 
respectively, to changes in ​​P​tJ​​​ , ​​P​tI​​​ , and ​​P​ tJ​ in​​, which are conditionally uncorrelated 
with ​​η​t, IJ​​​. In these equations, ​​​1997, I→military​​​ is the share of industry ​I​ ’s output that 

14 The other demand shifter used by Acemoglu, Akcigit, and Kerr (2016) focuses on changes in industry demand 
resulting from China’s consequential export expansion. Between 1995 and 2011, China’s gross output exports to 
the United States, as a share of US GDP, has increased from 0.5 percent to 2.7 percent. More importantly for the 
purposes of the current paper, growth in China’s exports to the United States dramatically differ across industries. 
But, in the first-stage estimates of equation (13), increased exports from China are associated with an increase in 
prices, counter to the motivation for the instrument. 
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is purchased by the “Federal National Defense” industries.15 According to equa-
tion (14), demand for an industry ​J​ ’s output will vary due to fluctuations in military 
spending if it is a direct supplier to the military, if its main customers are important 
suppliers to the military, or if its main customers are indirect suppliers to the mil-
itary. Among the industries in the sample, the “other transportation industry,” in 
which ships, airplanes, and tanks are manufactured, has the highest ​​​1997, I→military​​​.  
This industry has the strongest direct relationship with the military. Industries that 
are, on the other hand, indirectly reliant on purchases from the military include 
“instruments” and “petroleum refining.” Equation (15) is identical to equation (14) 
except for the ​I​ subscript. And, to construct the military spending shock​​​​tJ’s suppliers​​​ , I 
compute the average military spending shock of industries ​I​ , weighting each supply-
ing industry by the extent to which they supplied intermediate inputs to industry ​J​.

Table 1 presents the coefficient estimates from regressions defined by equa-
tion (13). The first two columns present OLS estimates. In the IV specifications, 
given in the final two columns, the instruments have the expected relationship with 
the relative price variables: Increased demand from federal spending is positively 
related with the price of that industry’s good. In these specifications, the instruments 
are sufficiently powerful to yield reliable, unbiased estimates of ​​ε​M​​​ and ​​ε​Q​​​. For these 
specifications, the point estimates are actually slightly negative ​​ε​M​​​ , around ​−0.1​ , 
though one cannot reject 0 (or slightly positive values) for this elasticity of substi-
tution. The right endpoint of a 90 percent confidence interval is approximately ​0.2​.  
For ​​ε​Q​​​, the OLS estimates result in an estimate of ​1.2​–​1.3​; the IV specifications 
produce estimates closer to ​0.8​–​0.9​. In these specifications, the standard errors for ​​
ε​Q​​​ are substantially larger: unit elasticities—as used previously in the literature—
cannot be rejected.

In online Appendix D, I report results from regressions that estimate the slopes 
of the relationships between input expenditures and prices for different countries; 
using different—either coarser (with 9 industries) or finer (with 67 industries)—
industry classification schemes; using a longer definition of a time period; and spec-
ifications for which these slopes are separately estimated for different subsamples 
of industries. The results in the Appendix accord with those presented in Table 1. 
Here, I summarize the results of these exercises. First, with more coarsely defined 
industries, the estimated elasticities are similar, but the instruments in the IV speci-
fications are now weak. Second, estimates of ​​ε​M​​​ and ​​ε​Q​​​ are nearly identical to those 
in Table 1 with samples that include more upstream observations per downstream 
observation ​×​ year. Third, estimates of ​​ε​M​​​ are somewhat larger, and estimates of ​​ε​Q​​​ 
are somewhat smaller, with longer time periods (two years, instead of one year). 
Fourth, using the World Input Output Tables (WIOT), I estimate the slopes of inter-
mediate input cost share versus intermediate input price relationships for a sample 
of six developed countries—Denmark, France, Italy, Japan, the Netherlands, and 

15 To define Output​​%​1997, J→I′​​​ , write ​​​1997, J→​I ′ ​​​​ as the share of industry ​J​ ’s output that is purchased by industry  
​I′​ and store these elements in a matrix S. Then, Output​​%​1997, J→I′​​​ is the ​J​, ​I′​ element of the matrix ​I + S + 
 ​S​​ 2​ + ​S​​ 3​ + …  = ​​ (I − S)​​​ −1​​.

Note that while Acemoglu, Akcigit, and Kerr (2016) motivate this definition using Cobb-Douglas sectoral pro-
duction functions, the same definition—as a demand shifter—is compatible with CES production functions as well. 
See online Appendix F.7. 
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Spain. While, for these countries, I cannot apply variation in military spending as 
an instrument, the OLS estimates for these six countries are similar to those in the 
first two columns of Table 1: the estimates of ​​ε​M​​​ are slightly larger (though still sig-
nificantly smaller than 1), while estimates of ​​ε​Q​​​ are somewhat smaller. In sum, the 
results from Table 1 are broadly, but not universally, robust to different samples and 
specifications. In all specifications, ​​ε​M​​​ is safely well below ​1​.

While I am not aware of any previous research aimed at estimating ​​ε​M​​​ , the 
estimates of ​​ε​Q​​​ presented in Table 1 accord with the few existing estimates for this 
parameter.16 Rotemberg and Woodford (1996) estimate ​​ε​Q​​​ by running a regression 

16 Boehm, Flaaen, and Pandalai-Nayar (2015b) study the impact of the 2011 T​​o – ​​hoku earthquake on the input 
purchases of US multinational firms that had a presence in Japan. Using exogenous variation provided by the earth-
quake, Boehm, Flaaen, and Pandalai-Nayar (2015b) estimate a firm-level elasticity of substitution between capital/
labor and intermediate inputs (their ​ζ​) and a firm-level elasticity of substitution between intermediate inputs sourced 
from Japan and everywhere else (their ​ω​). The former elasticity corresponds to a firm-level version of this paper’s ​​

Table 1—Regression Results Related to Equation (13)

Second-stage regression results (1) (2) (3) (4)

​​ε​M​​​ −0.07 −0.13 −0.13 −0.11
(0.04) (0.04) (0.19) (0.20)

​​ε​Q​​​ 1.18 1.27 0.84 0.88
(0.06) (0.06) (0.44) (0.35)

First stage: dependent variable is ​Δ log ​P​ tJ​ in​ − log ​P​tI​​​ 
military spending shock​​​​tI​​​ −0.75 −0.70

(0.06) (0.06)
military spending shock​​​​tJ’s suppliers​​​ 0.96 1.11

(0.09) (0.12)
military spending shock​​​​tJ​​​ −0.12 −0.14

(0.07) (0.06)
F-statistic 66.42 17.48

First stage: dependent variable is ​Δ log ​P​tJ​​ − log ​P​ tJ​ in​​ 
military spending shock​​​​tI​​​ −0.13 0.00

(0.04) (0.04)

military spending shock​​​​tJ’s suppliers​​​ −0.30 0.11
(0.06) (0.08)

military spending shock​​​​tJ​​​ 0.38 0.35
(0.04) (0.04)

F-statistic 28.04 12.31

Cragg-Donald statistic 27.04​​​​​ i​​ 40.54​​​​​ i​​ 
Wu-Hausman test p-value 0.66 0.52
Year fixed effects No Yes No Yes

Observations 4,800 4,800 4,592 4,592

Notes: The overall sample includes pairs of industries ​J​, and, for each industry ​J​, the top ten 
supplying industries, ​I​. In the third and fourth columns, the sample size is reduced because of 
the exclusion of the government industry. In the row labeled “Cragg-Donald Statistic,” an “i” 
indicates that the test for a weak instrument is rejected at the 10 percent threshold. Within this 
table, the “military spending ​​shock​​​​​tJ​​​​​”​ term, the “military spending ​​shock​​​​tI​​​​​​” term, and the “mil-
itary spending ​​shock​​​​​tJ’s suppliers​​​”​ term are given by equations (14), (15), and (16). These three 
military shock terms are meant to predict changes in the three price terms that appear on the 
right-hand side of equation (13).
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of manufacturing industries’ intermediate input expenditure shares against the rel-
ative price of intermediate inputs, instrumenting the relative price of intermediate 
inputs using the price of crude oil. For industries within the manufacturing sector, 
Rotemberg and Woodford estimate a value of ​0.7​ for the elasticity of substitution 
between the capital-labor and the intermediate input bundles. More recent papers, 
using variation in the unit prices that individual plants pay for different factors, yield 
estimates of ​​ε​Q​​​ in a similar range. Oberfield and Raval (2014) regress plants’ inter-
mediate input cost shares against the wages prevailing in their local labor markets, 
then combine this plant-level estimate with information on within-industry disper-
sion in plants’ intermediate input intensities to build an industry-level estimate of ​​
ε​Q​​​. Their estimates of ​​ε​Q​​​ lie between ​0.6​ and ​0.9​. In online Appendix B, I follow 
a similar strategy, exploiting spatial variation in materials prices instead of spatial 
variation in wages. I arrive at estimates of ​​ε​Q​​​ in the ​0.4​ to ​0.8​ range.

The model’s other elasticities of substitution, in particular ​​ε​D​​​ and ​​ε​LS​​​, will turn 
out to play only a secondary role in determining the importance of aggregate fluc-
tuations. For these parameters, I will choose a wide range, centered around values 
that have been estimated in previous papers. With respect to the estimate of ​​ε​D​​​ , 
Herrendorf, Rogerson, and Valentinyi (2013) consider long-run changes in broad 
sectors’ relative prices and final consumption expenditure shares. Their benchmark 
estimate of the preference elasticity of substitution between expenditures on agri-
cultural products, manufactured goods, and services is ​0.9​.17,18 Regarding ​​ε​LS​​​ , an 
extensive literature has estimated the Frisch labor supply elasticity, with estimates 
varying between ​0.5​ and ​3​; see Prescott (2006) and Chetty et al. (2011) for two 
syntheses of this literature.

To summarize, Table 1 suggests that a value for ​​ε​M​​​ close to 0 and one for ​​ε​Q​​​ that 
is close to but less than ​1​ faithfully describe industries’ ability to substitute across 
inputs. In the following section, I will refer to ​​ε​M​​  =  0.1​, ​​ε​Q​​  =  1​, and ​​ε​D​​  =  1​ as 
my benchmark set of parameter values.19 However, since the standard errors of ​​ε​Q​​​ 
are somewhat large, and since I have not even attempted to identify ​​ε​X​​​ , ​​ε​D​​​ , or ​​ε​LS​​​ , it 

ε​Q​​​; see Oberfield and Raval (2014) or the current paper’s online Appendix B for an explanation on how elasticities 
of substitution in firm-level and industry-level production functions can differ. The latter estimate is similar in spirit, 
but distinct from, a firm-level version of ​​ε​M​​​. 

17 With respect to an industry classification scheme closer to the one used in the current paper, Ngai and 
Pissarides (2007) argue that “the observed positive correlation between employment growth and relative price 
inflation across two-digit sectors” (p. 430) supports an estimate of ​​ε​D​​​ that is less than 1. Also, Oberfield and Raval 
(2014) estimate a preference elasticity of between ​0.8​ and ​1.1​ across two-digit manufacturing industries. 

18 To emphasize, ​​ε​D​​​ parameterizes how easily the consumer can substitute across coarsely defined industries’ 
products (for example, the elasticity of substitution between Motor Vehicles and Furniture, or between Apparel 
and Construction). Broda and Weinstein (2006) and Foster, Haltiwanger, and Syverson (2008), among others, esti-
mate a much larger elasticity of substitution in consumers’ preferences. These larger elasticities of substitution are 
estimated using within-industry variation, and characterize how easily consumers substitute between, for example, 
ready-mix concrete produced by two different plants, or between different varieties of red wine. 

19 It is true that there is some weak evidence in favor of ​​ε​Q​​  <  1​. However, given the large variability of the 
estimates of ​​ε​Q​​​ , I will choose the conventional value of ​1​ for ​​ε​Q​​​ for the benchmark parameter configuration, and 
consider a secondary specification with ​​ε​Q​​  =  4/5​ in many of the other robustness checks.

The confidence intervals for ​​ε​M​​​ in the final columns of Table 1 span both positive and negative values (in fact the 
point estimates from the IV regressions are negative). Negative, statistically distinguishable from zero estimates of ​​
ε​M​​​ would be troublesome, as this would indicate that some component of the Section I model is mis-specified. This 
is not the case here, but the choice of ​​ε​M​​  =  0.1​ does require some justification. I choose ​0.1​ as my benchmark value 
for ​​ε​M​​​ as it lies in the middle of positive portion of the 90 percent confidence interval for this parameter. 



268	 American Economic Journal: macroeconomics�O ctober 2017

will be necessary to apply a range of values for these parameters. In the following 
section, I will compute the aggregate importance of sectoral shocks applying differ-
ent reasonable combinations of ​​ε​X​​​ , ​​ε​Q​​​ , ​​ε​M​​​ , and ​​ε​D​​​ to Section I’s model, and compare 
this estimated contribution of sectoral shocks to a calibration in which ​​ε​X​​​, ​​ε​Q​​​, ​​ε​M​​​, 
and ​​ε​D​​​ are all set equal to ​1​.

III.  Estimates of the Importance of Sectoral Shocks

This section contains the main results of the paper. In this section, I describe 
the calibration of certain parameters and the procedure with which I estimate the 
importance of common productivity shocks (Section IIIA); present the estimates 
of the importance of sectoral shocks for different values of the preference and pro-
duction elasticities (Section IIIB); and examine the sensitivity of the benchmark 
results to changes in sample, industry definition, country, and other details of the 
estimation procedure (Section IIIC). I discuss additional robustness checks in online 
Appendix E.

A. Calibration and Estimation Details

Besides the preference and production elasticities, the model filter requires data 
on industries’ output at each point in time along with information on the long-run 
average relationships across sectors. I discuss these two requirements in turn.

Regarding the data on industries’ output, I combine Dale Jorgenson’s 35-Sector 
KLEMS dataset (which spans the 1960 to 2005 period) with the output data from 
the BEA Industry Accounts (spanning 1997 to 2013) that were used in the previous 
section.20 From these two datasets, I take information on industries’ gross output, 
using industry-specific price deflators.

The parameters ​​ξ​J​​​ , ​​μ​J​​​ , ​​α​J​​​ , ​​Γ​ IJ​ X ​​ , and ​​Γ​ IJ​ M​​ are chosen to match the model-predicted 
cost shares to the corresponding values in the data. These parameters contain only 
information about the steady-state of the equilibrium allocation. The demand shares, ​​
ξ​J​​​ , are chosen so that the model’s steady-state consumption choices are proportional 
to the amount that the industry sells to consumers or as government consumption 
expenditures; the ​​ξ​J​​​ are restricted to sum to ​1​. The other parameters are chosen to 
match factor intensities, for each industry-factor pair. For instance, ​​μ​J​​​ is the value 
that equates the model-predicted intermediate input cost share with the empirical 
counterpart.21 The empirical values that are used to calibrate the factor intensities 
are described in Appendix A. Online Appendix F.1 provides additional details on the 
calibration of the parameters relevant to the steady state.22

20 The Jorgenson data can be found at http://scholar.harvard.edu/jorgenson/data. Jorgenson, Gollop, and 
Fraumeni (1987) provide an extensive description of this dataset. 

21 When ​​ε​Q​​  =  1​ , the intermediate input cost share and ​​μ​J​​​ are equal to one another. Alternatively, when inter-
mediate inputs are gross complements or gross substitutes to other factors of production, the model-predicted cost 
share will also depend on the relative prices of the intermediate input bundle and the price of the other factors of 
production. 

22 In online Appendix E, I examine the sensitivity of Section IIIB’s results to using 1972, instead of 1997, as the 
year to which the steady-state allocation is calibrated. 

http://scholar.harvard.edu/jorgenson/data
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I choose ​β​ and ​​δ​K​​​ based on the values used in past analyses. I set the discount 
factor, ​β​ , to ​0.96​ and the capital depreciation rate, ​​δ​K​​​, to ​0.10​. I set the labor sup-
ply elasticity, ​​ε​LS​​​, equal to ​2​ , and explore the sensitivity of the main results to this 
parameter in Table 5.

These calibrated parameters define the ​​Π​1​​​ , ​​Π​2​​​ , and ​​Π​3​​​ matrices that appear in 
equation (11). This equation, which I reproduce for the reader’s convenience below, 
can be used to infer each period’s productivity shocks:

	​ ​ω​ t+1​ A ​   = ​​ (​Π​3​​)​​​ −1​ Δ log ​Q​t+1​​ − ​​(​Π​3​​)​​​ −1​ ​Π​1​​ Δ log ​Q​t​​ − ​​(​Π​3​​)​​​ −1​ ​Π​2​​ ​ω​ t​ A​.​

I apply two procedures to recover estimates of the ​​ω​​ A​​s. First, following the 
approach of Foerster, Sarte, and Watson (2011), I initialize the first-period produc-
tivity shocks at ​0​ , ​​ω​0​​  =  0​ , and then iteratively apply equation (11). This procedure 
is infeasible for certain sets of parameter values. For particular parameter configu-
rations, some eigenvalues of ​​​(​Π​3​​)​​​ −1​ ​Π​2​​​ are greater than 1 in absolute value. In this 
case, data on output changes alone cannot fully identify the productivity shocks.23 
A second issue arises, as some of the eigenvalues of ​​Π​3​​​ continuously pass from pos-
itive to negative values (or vice versa) as the chosen calibrated parameters are con-
tinuously modified.24 As a result, the smallest eigenvalue of ​​Π​3​​​ is close to zero for 
certain combinations of the calibrated parameters. When either of these two issues 
arise, as a second approach, I treat the initial productivity shocks as an unknown 
state, and apply the Kalman filter, using the output data in each period to iteratively 
produce estimates of each date’s productivity innovation. In the parameter configu-
rations for which the largest eigenvalue of ​​​(​Π​3​​)​​​ −1​ ​Π​2​​​ is less than 1, and the smallest 
eigenvalue of ​​Π​3​​​ is sufficiently large, the two approaches produce the same esti-
mates of the productivity shocks.

B. Results

With the estimates of ​ω​ in hand, I present two measures of the importance of 
sectoral shocks in shaping aggregate volatility. To compute the first measure, 
I perform factor analysis to extract the (single) common component of the ​​ω​​ A​​s. 
Then, with the covariance matrices of the industry-specific and common produc-
tivity shocks in hand, I recover the model-implied covariance matrices for indus-
tries’ value added that result only from sector-specific shocks (call this ​​Σ​​ ind​​) or 
from both sector-specific and common shocks (call this ​​Σ​​ all​​).25 With ​​v – ​​ denoting the  
​N​-dimensional vector that contains each industry’s value added share, the fraction 

23 For parameter combinations for which at least one eigenvalue of ​​​(​Π​3​​)​​​ −1​ ​Π​2​​​ is greater than 1 in absolute value, 
the “poor man’s invertibility condition” in Fernández-Villaverde et al. (2007) is violated. 

24 To give an example, when ​​ε​D​​​ , ​​ε​M​​​ , and ​​ε​Q​​​ equal 0.15, 0.25, and 1, and applying all of the other choices 
described in this subsection, the smallest eigenvalue of ​​Π​3​​​ is ​0.036​. Then, decreasing ​​ε​M​​​ from ​0.25​ to ​0.2​ yields 
a minimum eigenvalue of ​​Π​3​​​ equal to ​−0.006​. For ​​ε​M​​​ near ​0.2​ , then, the model filter given by equation (11) will  
yield unreliable estimates of the ​​ω​ t​ A​​. 

25 Online Appendix F.5 explains the calculations behind ​​Σ​​ ind​​ and ​​Σ​​ all​​. 
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of aggregate output volatility that is explained by the independent component of 
industries’ productivity shocks is given by

(17)	​ ​R​​ 2​​(sectoral shocks)​  = ​  ​v –​′ ​Σ​​ ind​​v –​ ______ 
​v –​′ ​Σ​​ all​​v – ​

 ​ .​

The second measure of the relative importance of the common shocks is the aver-
age sample correlation of the productivity shocks:

(18)	​​ ρ – ​ ​(ω)​  = ​  ∑ 
I=1

​ 
N

 ​​ ​ ∑ 
J=1

​ 
N

  ​​ corr ​(​ω​i​​, ​ω​j​​)​.​

These two measures were also used by Foerster, Sarte, and Watson (2011) to 
summarize the importance of sectoral shocks.

Figure 3 displays these two summary measures for different values of ​​ε​M​​​ and ​​
ε​Q​​​. According to the left panel of this figure, when ​​ε​D​​​ , ​​ε​M​​​ , and ​​ε​Q​​​ are all equal to 
1—as is the case in almost all previous analyses of multi-sector real business cycle 
models—sector-specific shocks account for ​21​ percent of aggregate volatility.26 For 
these same values of ​​ε​D​​​ , ​​ε​M​​​ , and ​​ε​Q​​​ , the average correlation of the productivity 
shocks is ​0.19​.

A lower calibrated value for the elasticity of substitution among intermediate 
inputs yields estimates for industries’ productivity shocks that are less correlated 
with one another. This relationship, which was the main takeaway of the simple 
example given in Section ID, is depicted in panel A of Figure 3. With ​​ε​M​​​ and ​​ε​D​​​ as ​
0.1​ and ​1​, respectively, the filter results in productivity shocks that have an average 
correlation of ​0.06​. Put differently, the correlations among industries’ output growth 
rates could arise either through productivity shocks that are relatively correlated 
and goods that have relatively high levels of substitutability, or through nearly inde-
pendent productivity shocks and complementarity across the goods that industries 
produce.

With lower estimates of the correlation among productivity shocks, the common 
component of these shocks will account for a smaller fraction of aggregate volatility. 

26 Foerster, Sarte, and Watson (2011) also perform a factor analysis on industries’ productivity shocks. They 
compute the fraction of industrial production growth that is due to the first two factors. The remaining variation can 
be considered equivalent to the industry-specific productivity shocks in the current paper. The two common factors 
explain ​80​ percent of the variation in overall industrial production growth in the first third of the sample (1972 to 
1983) and ​50​ percent in the latter two-thirds (1984 to 2007). Averaging over these periods, sectoral shocks contrib-
ute roughly ​40​ percent of industrial production volatility.

There are a few potential explanations for why my figures may differ from those in Foerster, Sarte, and 
Watson (2011). One important difference is that the Foerster, Sarte, and Watson (2011) analysis is restricted to the 
goods-producing sectors of the economy, while I study the entire private economy; Ando (2014) explores the impli-
cations of this difference in coverage on the estimated contribution of industry-specific shocks. Other differences 
include a difference in sample period (1960 to 2013 in the current paper, compared to 1972 to 2008 in Foerster, 
Sarte, and Watson 2011), and period length (one quarter in Foerster, Sarte, and Watson 2011 versus one year, here). 
I show in the online Appendix that excluding the Great Recession somewhat increases the assessed role of indus-
try-specific shocks: when ​​ε​D​​  = ​ ε​M​​  = ​ ε​Q​​  =  1​, ​​R​​ 2​​(sectoral shocks)​​ is ​32​ percent without the Great Recession, 
instead of ​21​ percent when the whole sample period is included. Decreasing the period length would, on the other 
hand, with ​​ε​M​​  =  1​ and ​​ε​D​​  =  1​, have little effect on the relative importance of sectoral shocks; see the fourth and 
fifth columns of online Appendix Table 15. 
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Indeed, for ​​ε​D​​  =  1​ and ​​ε​Q​​  =  1​, more than half of aggregate volatility is due to 
industry-specific shocks so long as ​​ε​M​​  ≤  0.2​; see panel A of Figure 3. With our 
benchmark configuration—(​​ε​D​​​, ​​ε​M​​​ , ​​ε​Q​​​) equal to (​1​, ​0.1​, ​1​)—​83​ percent of the vari-
ation of aggregate output is due to sectoral shocks. The right panel of this figure 
illustrates that ​​R​​ 2​​(sectoral shocks)​​ is relatively unresponsive to the chosen value of ​​
ε​Q​​​. This, too, accords with the example in Section ID. With ​​ε​M​​  =  1​ and ​​ε​D​​  =  1​,  
the fraction of variation explained by industry-specific TFP shocks is between ​13​ 
and ​30​ percent for ​​ε​Q​​  ∈ ​ [0.15, 1.45]​​. In sum, within the range of elasticities that 
I have estimated in Section II, complementarities among intermediate inputs are 
important for assessing the role of aggregate fluctuations, but the elasticity of sub-
stitution between value added and intermediate inputs is not.

Table 2 expands on these results. In this table, I compute the fraction of varia-
tion explained by sectoral shocks for different ​​ε​D​​​ , ​​ε​M​​​ , and ​​ε​Q​​​ combinations. As in 
Figure 3, fixing a unit elasticity of substitution across intermediate inputs results in 
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Figure 3. R2(sectoral shocks) and ​​ρ – ​​(ω) for Different Values of ​​ε​M​​​ and ​​ε​Q​​​

Notes: In panel A, ​​ε​Q​​​ = 1. In panel B, ​​ε​M​​​ = 1. In both panels, ​​ε​D​​​ = 1. Hollow circles denote figures that result from 
the model filter, with ​​ω​0​​​ �fixed at 0, iteratively applying equation (11). “+” signs denote the figures that result from 
the Kalman filter.

Table 2—Robustness Checks: ​​R2​​(sectoral shocks) and ​​​​ρ – ​​​(ω)​ for Different Values of  
​​​​ε​​D​​​​​​, ​​​​ε​​M​​​​​​, and ​​​​ε​​Q​​​​

​​ε​M​​, ​ε​D​​, ​ε​Q​​​ ​​R​​ 2​​(sectoral shocks) ​​ρ – ​​(ω)​​ 
​1, 1, 1​ 0.21​​​​​ kf​​ 0.19​​​​​ kf​​

​1, 1, ​ 4 _ 
5
 ​​ 0.19​​​​​ kf​​ 0.21​​​​​ kf​​ 

​​ 1 __ 10 ​ , ​ 
3 _ 
5
 ​ , 1​ 0.98​​​​​ kf​​ 0.04​​​​​ kf​​ 

​​ 1 __ 10 ​ , ​ 
4 _ 
5
 ​ , 1​ 0.99​​​​​ kf​​ 0.04​​​​​ kf​​ 

​​ 1 __ 10 ​ , 1, 1​ 0.83 0.06

​​ 1 __ 10 ​ , ​ 
6 _ 
5
 ​ , 1​ 0.63 0.07

​​ 1 __ 10 ​ , ​ 
7 _ 
5
 ​ , 1​ 0.56 0.08

​​ 1 __ 10 ​ , ​ 
8 _ 
5
 ​ , 1​ 0.49 0.10

​​ 1 __ 10 ​ , ​ 
9 _ 
5
 ​ , 1​ 0.43 0.11

Note: A “​​​​​kf​​” indicates the usage of the Kalman filter, as opposed to direct applications of equa-
tion (11) to infer the ​ω​ productivity shocks.
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relatively high correlations among filtered productivity shocks, and a low estimated 
importance for industry-specific shocks. Even with improbably high values for ​​ε​D​​​ , 
industry-specific shocks account for at least two-fifths of aggregate output volatility 
using Section II’s estimate of ​​ε​M​​​.

Next, I examine whether the choice of elasticities has implications for individ-
ual historical episodes. Figure 4 presents historical decompositions for two choices 
of ​​ε​M​​​. In both panels, ​​ε​D​​  = ​ ε​Q​​  =  1​. In panel A, I set ​​ε​M​​  =  1​; and, in panel B, ​​
ε​M​​  =  0.1​. With relatively high elasticities of substitution across inputs, each and 
every recession between 1960 and the present day is explained almost exclusively 
by the common shocks. The sole partial exception is the relatively mild 2001 reces-
sion. In 2001 and 2002, Non-Electrical Machinery, Instruments, F.I.R.E. (Finance, 
Insurance, and Real Estate), and Electric/Gas Utilities—together accounting for 
GDP growth rates that were ​2.0​ percentage points below trend.

Table 3, along with panel B of Figure 4, presents historical decompositions, now 
allowing for complementarities across intermediate inputs. Here, industry-specific 
shocks are a primary driver, accounting for a larger fraction of most, but certainly 
not all of, recent recessions and booms. According to the model-inferred productiv-
ity shocks, the 1974–1975 and, especially, the early 1980s recessions were driven to 
a large extent by common shocks.27 At the same time, the late 1990s expansion and 
the 2008–2009 recession are each more closely linked with industry-specific events. 
Instruments (essentially computer and electronic products) and F.I.R.E. had an out-
size role in the 1996–2000 expansion, while wholesale/retail, construction, motor 
vehicles, and F.I.R.E. appear to have had a large role in the most recent recession. 
(Other services, due to its large gross output share, appears as an important industry 

27 While the common factor played a large role in the 1980s recessions, so too did the motor vehicles indus-
try, especially in the first of the contractions. According to the model’s historical decomposition, motor vehicles 
accounted for a ​0.8​ percent drop in aggregate output in 1979 and 1980. 
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Figure 4. Historical Decompositions

Notes: The �figure presents the percentage point change in each year’s aggregate output (relative to trend) due 
to industry-specific and common shocks. In panel A, ​​ε​D​​​, ​​ε​M​​​, and ​​ε​Q​​​ are all equal to 1. In panel B, ​​ε​M​​​ = 0.1, 
​​ε​D​​​ = 1, and ​​ε​Q​​​ = 1.
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in most periods.) These model-inferred productivity shocks align with contempora-
neous historical accounts.28

C. Sensitivity Analysis

In Table 4, I examine the sensitivity of the assessed role of industry-specific 
shocks to the specification of productivity shocks, the industry classification scheme, 
and the calibration of industries’ cost shares. In online Appendix F, I specify and 
characterize a model with labor-augmenting productivity shocks. The first column 
reiterates the benchmark estimates with TFP shocks. The second column applies 
labor-augmenting productivity shocks. With ​​ε​Q​​  <  1​, sectoral shocks contribute a 
larger fraction to aggregate volatility when productivity is assumed to be labor aug-
menting. In the third column, I establish that the results of Figure 3 are qualitatively 
robust to an nine-industry partition of the economy.29 In the fourth column, I use 

28 Related to the early 1980s recession, Friedlaender, Winston, and Wang (1983, 1–2) characterize the auto 
industry as “a state in flux. Not only has the Chrysler Corporation been perilously close to bankruptcy, but Ford 
and General Motors have suffered unprecedented losses in recent years.” Regarding the 1996–2000 expansion, 
Jorgenson and Stiroh (2000) analyze the role of information-technology-producing and consuming industries as 
a source of productivity acceleration during this period. And, finally, regarding the latest recession, Goolsbee and 
Krueger (2015) and Boldrin et al. (2016), respectively, chronicle distresses in motor vehicles and construction. 

29 These industries are primary inputs (industries 1 to 3, according to Table A1), construction (industry 4), 
nondurable goods (industries 5 to 7 and 10 to 14), durable goods (industries 8, 9, and 15 to 23), transport and com-
munications (industries 24 to 26), wholesale and retail (industry 27), F.I.R.E. (industry 28), personal and business 
services (industry 29), and government (industry 30). While it would be interesting to test the sensitivity of these 
results to a finer industry classification scheme, the necessary data are unavailable. 

Table 3—Historical Decompositions Using ​​​​ε​​D​​​​​  =  1​, ​​​​ε​​M​​​  =  0.1​, and ​​ε​Q​​​​​  =  1​

1974–1975 1980–1982

Other services −1.2 Other services −1.4
Construction −1.0 Construction −0.7
Government 0.4 Motor vehicles −0.5
Motor vehicles −0.3 Warehousing −0.4
Warehousing −0.3 Wholesale and retail −0.3
Common factor −1.7 Common factor −4.9
Total change −6.9 Total change −10.2

1996–2000 2008–2009

Other services 1.7 Other services −2.1
Instruments 0.9 Wholesale and retail −1.8
F.I.R.E. 0.9 F.I.R.E. −1.1
Construction 0.8 Construction −1.0
Wholesale and retail 0.4 Motor vehicles −0.6
Common factor −1.6 Common factor −1.4
Total change 6.8 Total change −15.7

Notes: For four points in the sample, I report the five industries with the largest contributions 
to changes in aggregate output, the contribution of the common productivity shock, and the 
aggregate change in GDP, relative to trend. The stated changes are in percentage points.
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data from 1972 (instead of 1997, as in the benchmark calculations) to infer the 
steady-state relevant parameters ​​Γ​ IJ​ M​​ , ​​μ​J​​​ , ​​α​J​​​ , and ​​ξ​J​​​.30

For the fifth column, in the data generating process, I replace factor-neutral 
productivity shocks in the government industry with government demand shocks 
(online Appendix F.8 spells out the solution of the model filter with demand shocks; 
see in particular Equation 73). For all other industries, I retain TFP shocks instead 
of demand shocks. The rationale behind this robustness check stems from the appli-
cation of military spending shocks as a source of identifying variation for ​​ε​M​​​ and ​​ε​Q​​​ 
in Section II. Up to now, our model filter has precluded these types of shocks. So, 
the final column of Table 4 checks whether the misspecification, which comes about 
because of the omission of military spending shocks, is quantitatively important. It 
is not.

Table 5 presents the relative importance of sectoral shocks for various values of ​​
ε​X​​​ and ​​ε​LS​​​. In the specifications in which ​​ε​M​​​ and ​​ε​D​​​ both equal ​1​ , industry-specific 
shocks contribute between ​18​ and ​23​ percent of aggregate volatility. In contrast, so 
long as ​​ε​M​​  =  0.1​, industry-specific shocks account for at least half of GDP volatil-
ity with ​​ε​D​​  ∈ ​ {2/3, 1, 4/3}​​.

As a third set of robustness checks, I examine the contribution of sectoral shocks 
to aggregate fluctuations in different countries. For this analysis, I employ data 
from the EUKLEMS database, which describes industries’ output growth rates for 
a range of developed countries between 1970 and 2007 (see online Appendix C for 
a description of the dataset). As I estimate in online Appendix D, industries’ input 
choices and input prices, using the World Input Output Tables, suggest the elasticity 

30 The Capital Flows data necessary to construct ​​Γ​ IJ​ X ​​ are unavailable for 1972. For this reason, I use the 1997 
Capital Flows Table to infer the ​​Γ​ IJ​ X ​​ for the robustness check corresponding to the penultimate column of Table 4. 

Table 4—Robustness Checks: ​​R2​​(sectoral shocks) and ​​​​ρ – ​​​(ω)​ for Different Values of ​​​​ε​​D​​​​​​, ​​​​ε​​M​​​​​​, and ​​​​ε​​Q​​​​

Benchmark
Labor-Aug. 
productivity

9-Industry 
classification

1972  
IO table

Gov. dem. 
shocks

​​R​​ 2​​(sectoral shocks)​​
​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  = ​ (1, 1, 1)​​ 0.21kf 0.21kf 0.26 0.18kf 0.22kf

​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (1, 1, ​​ 4 _ 
5
 ​​) 0.19kf 0.22kf 0.23 0.16kf 0.20kf 

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​, 1, ​ 4 _ 
5
 ​​) 0.81 0.93 0.85kf 0.98 0.81

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​, ​ 
2 _ 3 ​ , 1)​ 0.99kf 0.99kf 0.95 0.98kf  0.99kf

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​,1, 1)​ 0.83 0.83 0.82 1.00 0.83

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​, ​ 
4 _ 3 ​ , 1)​ 0.59 0.59 0.58 1.00 0.58

​​ρ – ​​(ω)
​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  = ​ (1, 1, 1)​​ 0.19kf 0.19kf 0.26 0.17kf 0.19kf

​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (1, 1, ​​ 4 _ 
5
 ​​) 0.21kf 0.19kf 0.29 0.19kf 0.21kf

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​, 1, ​ 4 _ 
5
 ​​) 0.06 0.07 0.15kf 0.05 0.06

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​, ​ 
2 _ 3 ​ , 1)​ 0.04kf 0.04kf 0.11 0.01kf 0.04kf

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​,1, 1)​ 0.06 0.06 0.13 0.08 0.06

​​(​ε​M​​, ​ε​D​​, ​ε​Q​​)​  =  (​ 1 __ 10 ​, ​ 
4 _ 3 ​ , 1)​ 0.08 0.08 0.18 0.04 0.08

Notes ​​​A “kf​​” indicates the usage of the Kalman filter to infer the ​ω​ productivity shocks.
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of substitution among intermediate inputs may be higher for these six countries than 
are in Table 1, while the elasticity of substitution between intermediate inputs and 
value added may be lower. For this reason, in Table 6, I choose a somewhat higher 
value of ​​ε​M​​​ , ​1/3​ instead of ​0.1​. As with the US data, correlations among produc-
tivity shocks tend to be lower, and the assessed role of industry-specific shocks are 
higher, in specifications with lower values of the preference and production elastic-
ities of substitution. For five of these six foreign countries, the sole exception being 
Japan, industry-specific productivity shocks account for at least half of aggregate 
volatility with ​​ε​M​​  =  1/3​.

In online Appendix E, I demonstrate that the benchmark results are robust to 
(i) the de-trending method, (ii) the period length, (iii) censoring outlier observa-
tions, (iv) looking at different parts of the sample separately (excluding the Great 

Table 5—Robustness Checks: ​​R2​​(sectoral shocks) and ​​​​ρ – ​​​(ω)​ for Different Values of ​​​​ε​​D​​​​​​ and ​​​​ε​M​​​​​​

​​ε​X​​​ ​1​ ​1​ ​1​ ​1​ ​​ 3 _ 
5
 ​​ ​​ 4 _ 

5
 ​​ ​​ 6 _ 

5
 ​​ 

​​ε​LS​​​ ​2​ ​​ 1 _ 2 ​​ ​1​ ​4​ ​2​ ​2​ ​2​ 

​​R​​ 2​​(sectoral shocks)
​​(​ε​M​​, ​ε​D​​)​  = ​ (1, 1)​​ 0.21kf 0.18kf 0.20kf 0.23kf 0.23kf 0.22kf 0.21kf

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 __ 10 ​, ​ 
2 _ 3 ​​) 0.99kf 0.99kf 0.99kf 0.99kf 0.96kf 0.98kf 1.00kf

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 __ 10 ​ , 1​) 0.83 0.78 0.81 0.92 0.97 0.86 0.81

​​(​ε​M​​ , ​ε​D​​)​  =  (​ 1 __ 10 ​ , ​ 
4 _ 3 ​​) 0.59 0.51 0.55 0.62 0.65 0.62 0.56

​​ρ – ​​(ω)​​ 
​​(​ε​M​​, ​ε​D​​)​  = ​ (1, 1)​​ 0.19kf 0.22kf 0.21kf 0.18kf 0.18kf 0.19kf 0.20kf

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 __ 10 ​ , ​ 
2 _ 3 ​​) 0.04kf 0.04kf 0.04kf 0.04kf 0.03kf 0.04kf 0.04kf

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 __ 10 ​, 1)​ 0.06 0.06 0.06 0.08 0.05 0.05 0.06

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 __ 10 ​, ​ 
4 _ 3 ​​) 0.08 0.09 0.08 0.07 0.07 0.07 0.08

Notes: Throughout the table, ​​​​ε​​Q​​​​​  =  1​. A “kf” indicates the usage of the Kalman filter, as opposed to direct applica-
tion of equation (11), to infer the ​ω​ productivity shocks.

Table 6—Robustness Checks: ​​R2​​(sectoral shocks) and ​​​​ρ – ​​​(ω)​ for Different Values of ​​​​ε​​D​​​​​​ and ​​​​ε​​M​​​​​​

Country Denmark Spain France Italy Japan Netherlands

​​R​​ 2​​(sectoral shocks)​​ 
​​(​ε​M​​, ​ε​D​​)​  = ​ (1, 1)​​ 0.63kf 0.87kf 0.80 0.47 0.07 0.44

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 _ 3 ​ , ​ 
2 _ 3 ​​) 0.87 1.00 1.00 0.89 0.61 0.81

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 _ 3 ​ , 1​) 0.80 0.98kf 1.00 0.84 0.30 0.72

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 _ 3 ​ , ​ 
4 _ 3 ​​) 0.76kf 0.96kf 1.00 0.79 0.79 0.64

​​ρ – ​​(ω)​​
​​(​ε​M​​, ​ε​D​​)​  = ​ (1, 1)​​ 0.08kf 0.08kf 0.10 0.13 0.34 0.11

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 _ 3 ​ , ​ 
2 _ 3 ​​) 0.02 0.02 0.05 0.06 0.07 0.03

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 _ 3 ​ , 1​) 0.02 0.04kf 0.09 0.12 0.17 0.05

​​(​ε​M​​, ​ε​D​​)​  =  (​ 1 _ 3 ​ , ​ 
4 _ 3 ​​) 0.04kf 0.05kf 0.13 0.17 0.07 0.07

Notes: Throughout the table, ​​ε​Q​​​  =  1. A “kf” indicates the usage of the Kalman filter, as opposed to direct applica-
tion of equation (11), to infer the ω productivity shocks.
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Recession, or looking at the first half and second half of the sample separately), and 
(v) modeling the durability of consumption goods.

IV.  Conclusion

In the short run, industries have limited ability to substitute across their inputs. This 
paper extends a standard multi-industry real business cycle model to explore the role 
of limited substitutability on the assessed role of sectoral shocks. A worked out exam-
ple of this elaborate model indicates that observed relationships among industries’ 
output growth rates could either be rationalized with high elasticities of substitution in 
production (or preferences) along with correlated shocks, or with low elasticities and 
uncorrelated shocks. Using data on industries’ input choices and their input prices, I 
estimate that production elasticities of substitution are, on balance, small. As a result, 
I find that sectoral shocks are more important than previously thought. Whereas pre-
vious assessments of multi-sector real business cycle models—based on unitary elas-
ticities of substitution across inputs and consumption products—have concluded that 
industry-specific shocks account for less than half of aggregate volatility, the current 
paper indicates that sectoral shocks are the primary source of GDP fluctuations.

Appendix

Details of the US Data.—This section clarifies the sample construction and defines 
the variables used to estimate the model’s elasticities of substitution. The main data 
sources are the 1997 to 2013 “Use” tables and the 1997 “Make” and Capital Flows 
tables, all from the Bureau of Economic Analysis; and Dale Jorgenson’s KLEMS 
dataset.

Table A1 characterizes the way in which I classify industries. The NAICS codes 
refer to those in the Annual IO Tables. The third through fifth columns of Table A1 
give the cost shares of capital, labor, and intermediate inputs. These are computed 
from the BEA GDP by Industry dataset. The intermediate input cost share is com-
puted as the ratio of intermediate input expenditures relative to total gross output. The 
labor share is the ratio of labor compensation to total gross output. The remainder 
defines the capital cost share. The final column of Table A1 gives the consumption 
expenditure share of each industry. The consumption expenditures are taken from 
the BEA 1997 Input-Output Table, as sales to the following industry codes: F010 
(Personal consumption expenditures), F02R (Residential private fixed investment), 
and F040 (Exports). To compute consumption expenditures by the government sec-
tor, I combine F06C (Federal national defense: Consumption expenditures), F07C 
(Federal national nondefense: Consumption expenditures), and F10C (state and 
local: consumption expenditures). With the aim of improving the numerical perfor-
mance of the model filter, in my calibrations of ξ, I bound the preference weights, 
from below, at 0.006.

Section II’s analysis requires information on purchases across industries, the prices 
of each industry’s good, and the prices of each industry’s intermediate input bundle. 
For each year between 1997 and 2013, the Annual IO Tables contain information 
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on the value of commodities that are used by different industries. The output price 
of each industry is taken from the BEA GDP by Industry dataset, using the Fisher 
ideal price index to aggregate up to the classification in Table A1. To compute each 
industry’s intermediate input price, I follow a similar procedure. For each down-
stream industry, I require information on changes in its intermediate input bundle’s 
price, for each year (this variable appears on the right-hand side of equation (13)). I 
use the Fisher ideal price index to compute change in the intermediate input prices:

	​ Δ log ​P​ t+1,J​ in
  ​  = ​  ∑ 

I=1
​ 

30

 ​​ ​ 
​P​tI​​​M​t,I→J​​ + ​P​t+1,I​​​ M​t+1,I→J​​   ____________________________   

​∑ I′=1​ 
30

  ​​ ​P​tI′​​ ​M​t,I′→J​​ + ​P​t+1,I′​​ ​M​t+1,I′→J​​
 ​​ · ​Δ log ​P​t+1,I​​​ ,

where, as in Section I, ​​M​t,I→J​​​ represents the physical units of intermediate inputs 
from industry I to industry J, and ​​P​tI​​​ denotes the unit price of industry I ’s output. For 
each downstream industry, J , I compute the change in its intermediate input price—
between years t and t + 1—as the weighted average in the changes in the prices of 
the supplying industries, I, with the weights set at the year t and t + 1 share of J ’s 
intermediate input purchases that come from industry I.

Table A1—Industry Definitions, Factor Shares, and Preference Weights

# Name NAICS Capital Labor
Interm. 
inputs Consumption

1 Agriculture, forestry 11 0.32 0.10 0.58 0.008
2 Mining 212 0.23 0.25 0.52 0.001
3 Oil and gas extraction 211, 213 0.40 0.18 0.42 0.000
4 Construction 23 0.16 0.32 0.52 0.036
5 Food and kindred products 311, 312 0.14 0.12 0.74 0.043
6 Textile mill products 313, 314 0.08 0.23 0.69 0.003
7 Apparel, leather 315, 316 0.09 0.22 0.69 0.017
8 Lumber 321 0.09 0.22 0.69 0.002
9 Furniture and fixtures 337 0.13 0.31 0.56 0.004
10 Paper and allied products 322 0.16 0.21 0.63 0.003
11 Printing and publishing 323, 511 0.18 0.29 0.53 0.009
12 Chemicals 325 0.27 0.16 0.58 0.020
13 Petroleum refining 324 0.21 0.06 0.73 0.009
14 Rubber and plastics 326 0.15 0.22 0.63 0.004
15 Non-metallic minerals 327 0.21 0.26 0.53 0.001
16 Primary metals 331 0.09 0.19 0.71 0.002
17 Fabric. metal products 332 0.16 0.29 0.54 0.003
18 Non-electrical machinery 333 0.11 0.27 0.62 0.009
19 Electrical machinery 335 0.18 0.24 0.58 0.005
20 Motor vehicles 3361–3363 0.11 0.15 0.74 0.024
21 Other transport. equip. 3364–3369 0.10 0.30 0.60 0.008
22 Instruments 334 0.19 0.24 0.56 0.021
23 Misc. manufacturing 339 0.21 0.32 0.47 0.009
24 Warehousing 48, 49 0.18 0.33 0.49 0.024
25 Communications 512, 513, 514 0.34 0.22 0.44 0.021
26 Electric/gas utilities 22 0.51 0.17 0.32 0.019
27 Wholesale and retail 42, 44, 45 0.32 0.38 0.30 0.117
28 F.I.R.E. 52-53, HS, OR 0.51 0.15 0.33 0.170
29 Other services 54-56, 60-89 0.18 0.43 0.38 0.250
30 Government G 0.15 0.54 0.31 0.159
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To construct ​​Γ​​ M​​ and ​​Γ​​ K​​, I use data from the 1997 Input Output Table and Capital 
Flows Table. I make two adjustments to the 1997 Capital Flows Table when produc-
ing ​​Γ​​ K​​. First, government investment is not measured in the Capital Flows Table. 
As a result, I need to apply information from the Input Output Table, which does 
contain sales to the government investment industry. These are measured as sales to 
the following industries: F06S, F06E, and F06N (Investment in Federal Defense); 
F07S, F07E, and F07N (Investment in Federal Nondefense); F10S, F10E, and F10N 
(Investment in State and Local Government). Second, ones needs to account for 
maintenance and repair expenditures, which are not included in the Capital Flows 
Table. As McGrattan and Schmitz (1999) report, maintenance expenditures are 
sizable, potentially accounting for 50 percent of total physical capital investment. 
Foerster, Sarte, and Watson (2011) use this finding as motivation for adding to the 
diagonal entries of ​​Γ​​ K​​. I add a 35 percent share to the diagonal entries of ​​Γ​​ K​​ to 
account for these maintenance and repair expenditures. This augmentation presumes 
that capital-good repairs draw on within-industry resources (e.g., firms that produce 
a product use their own inputs to repair their capital equipment).31

For the robustness check on good durability, performed in online Appendix 
Table 15, the set of durable goods are those designated as such by Basu, Fernald, 
and Kimball (2006), plus the construction industry: construction, lumber, furni-
ture and fixtures, non-metallic minerals, primary metals, fabricated metal products, 
non-electrical machinery, electrical machinery, motor vehicles, other transportation 
equipment, instruments, and miscellaneous manufacturing.
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B Cross-sectional estimates

In this section, I will apply plant-level input price variation and materials usage to

provide an alternate set of estimates of εQ. To do so, I pursue the following two-part

strategy. For each industry, I estimate how easily individual plants substitute across their

factors of production, by relating plants’ materials purchases to their materials prices. Then,

I apply the methods developed in Oberfield and Raval (2015), which allow me to combine

information on a) the plant-level elasticity of substitution, b) the dispersion of materials

cost shares, and c) the elasticity of plant scale to marginal costs so that I can ascertain the

corroborating estimates of εQ.

To preview the main results of this section, the elasticity of substitution for the plant-

level production function is approximately 0.65. Because within-industry variation in mate-

rials expenditure shares is small for each of the ten industries, the industry level production

function’s elasticity of substitution is only somewhat higher, 0.75. Moreover, across the

industries in the sample, the industry-level elasticities of substitution are similar to one

another.

B.1 Data source and sample

The data source, for this section, is the Census of Manufacturers. This dataset contains

plant-level information for each manufacturer in the United States, and is collected once

every five years, in years ending in a "2" or a "7." For certain industries, plants with greater

than five employees are asked to provide information on each of the material inputs that they

consume and each of the products that they produce. Critically, for the empirical analysis of

this section, the Census Bureau elicits information on both the quantities and values of these

inputs and outputs, allowing me to construct plant-level prices. Additionally, the Census

Bureau records a plant identifier, which will allow me to compare the intermediate input

purchases of the same plant across different time periods.

The sample in this section is identical to that which was used in an earlier paper (see

Atalay 2014). The industries are those for which outputs and inputs are relatively homoge-

neous. This choice reflects a desire to, as much as possible, rule out heterogeneous quality as

a source of input or output price variation. The ten industries that comprise the sample are
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Sample Units of Output Material Inputs N
Boxes, Year≤1987 Short Tons Paper/Paperboard (90%) 1820
Boxes, Year≥1992 Square Feet Paper/Paperboard (89%) 646
Ground Coffee 1000 Pounds Green Coffee Beans (80%) 300

Ready-Mix Concrete 1000 Cubic Yards
Cement (53%),

Sand/Gravel (28%)
3708

White Wheat Flour 50-Pound Sacks Wheat (90%) 503
Gasoline 1000 Barrels Crude Petroleum (84%) 692

Milk, Bulk 1000 Pounds
Unprocessed
Whole Milk (88%)

127

Milk, Packaged 1000 Quarts
Unprocessed
Whole Milk (72%)

2099

Raw Cane Sugar Short Tons Sugar Cane (93%) 177

Carded Cotton Yarn 1000 Pounds
Cotton Fibers (80%),
Polyester Tow (10%)

431

Pooled - - 10,503

Table 8: Description of the 10 industries in the sample.
Notes: This table is a duplicate of Table 1 of Atalay (2014). The percentages that appear in the Material
Inputs column are the fraction of materials expenditures that go to each particular material input. The
Material Inputs column shows the inputs that represent greater than 6% of the average plant’s total material
purchases.

corrugated boxes (with the years 1972-1987 and 1992-1997 analyzed separately. The way in

which material inputs are coded, for this industry, differs in the two parts of the sample),

ground coffee, ready-mix concrete, white wheat flour, gasoline, bulk milk, packaged milk, raw

cane sugar, and grey cotton yarn; see Table 8. For additional details regarding the sample,

see Appendix B of Atalay (2014).

B.2 Environment and assumptions

Each industry, I, comprises a set of plants i ∈ I, who combine capital, labor, material
inputs, and purchased services to produce a single product. The production function is

constant-returns to scale; separable between material inputs, N , and other inputs, O; with

constant elasticity of substitution, ηP :

Qit(Kit, Lit, Sit, Nit) =
(
(Ait ·Oit)

ηP−1
ηP + (Bit ·Nit)

ηP−1
ηP

) ηP
ηP−1 , (19)

where Oit = F (Kit, Lit, Sit)

Also by assumption, F exhibits constant returns to scale. Plants are allowed to flexibly

alter their input choices, including capital, each period. Furthermore, the factor prices that
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each plant faces, both for the material input and for the other input aggregate, are constant

in the amount purchased. These assumptions serve a dual purpose. Not only do these

assumptions greatly simplify the estimation of ηP , they also allow me to apply Oberfield and

Raval (2015)’s methodology to estimate εQ from ηP .

Use P othit and Pmatit to denote the factor prices for a unit of the other input aggregate and

the material input, respectively. Let Ait and Bit represent the two plant-level productivity

measures (other-input-augmenting and materials augmenting).

The demand curve faced by each plant, i, has constant elasticity, εD:

Qit = exp{θit} · (Pit)−ηD (20)

In Equation 20, θit represents a plant-year specific demand shifter. The assumption of a

constant elasticity demand curve, while probably counterfactual, is again useful for multiple

reasons. The constant-demand-elasticity assumption allows me to directly apply the Fos-

ter, Haltiwanger, and Syverson (2008) methodology to estimate ηD. Moreover, the same

assumption is invoked by Oberfield and Raval (2015)–whose work I apply, here–in their

aggregation of plant-level to industry level production functions.

The profit-maximizing levels ofNit andOit yield the following expression for the material-

output ratio:

log

�
Nit
Qit



= −ηP · log

�
Pmatit

Pit



+ ηP · log

�
ηD − 1
ηD



+ (ηP − 1) logBit (21)

This equation will form the basis of the estimation of ηP , a task to which I now turn.

B.3 The micro elasticity of substitution

In this subsection, I estimate the plant-level elasticity of substitution between purchased

inputs and other inputs. The baseline regression that I run is:

nit − qit = −ηP ·
�
pmatit − pit

�
+ �it . (22)

In Equation 22, and throughout the remainder of the section, I use lower-case letters to denote

the logged, de-meaned values of the variable of interest. In other words, ηP is estimated only

using within industry-year variation. To emphasize, both nit and qit refer to the number

of physical units, and not the values, of the material good that plant i purchases and the

output that it produces.

Ordinary least squares results are presented in the first column of Table 9. For most

industries, the estimate of ηP lies between 0.5 and 0.7, with concrete and flour having two
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of the lower estimates and bulk milk and raw cane sugar with two of the higher estimates.

There are at least two concerns regarding the interpretation of ηP–from an OLS esti-

mate of Equation 22–as an estimate of the micro elasticity of substitution. First, to the

extent that the constant elasticity of demand assumption–embodied in Equation 20–is

violated, Equation 22 suffers from omitted variable bias. A positive correlation between

log
(
ηD−1
ηD

)
and (pmatit − pit) will engender a positive bias in ηP . Second, I have assumed that

the materials supply curve that each i faces is flat. It is likely, however, that each plant’s fac-

tor supply curve is upward sloping. This instance of simultaneity bias–whereby a high-Bit
plant pays a high materials price–will also engender a positive bias in ηP

I offer two different approaches to circumvent these problems. Fist, I append plant-level

fixed effects to Equation 22. These fixed effects aim to capture long-run cross-sectional vari-

ation in the conditions in output and factor markets. As Foster, Haltiwanger, and Syverson

(2008, 2016) argue, the factor market conditions that a plant faces are substantially more

persistent than its productivity.

In a second specification, I instrument plants’ output and materials prices with the

prices paid and charged by competitor plants. Specifically, the two instrumental variables,

for pmatit − pit, are a) the year-t average materials price for plants that are within 50 miles of
plant i, and b) the year-t average output price for plants that are within 50 miles of plant

i. The idea behind these instruments is that the price of materials in nearby markets is

correlated with the price that i pays for its material inputs (if, for example, there is spatial

correlation in the abundance of primary inputs used in the production of i’s intermediate

inputs, or if there is a very productive, low marginal-cost supplier nearby), but should not in

any other way affect the propensity for i have exceptionally high or low materials expenditure

shares.32

Results from the two sets of regressions are given in the second and third columns

of Table 9. In the second column, estimates of ηP range from 0.40 to 0.92, with the two

largest estimates corresponding to two of the smaller-sample industries, coffee and sugar.

The pooled estimate of ηP is 0.68.

The instrumental variables are weak for the six smallest samples. For this reason, the IV

specification is performed only on the samples of plants in the corrugated boxes, ready-mix

concrete, packaged milk, and petroleum industries. In the third specification, the parameter

estimates are smaller and much less precisely estimated. The biggest difference is for the

ready-mix concrete industry, for which the estimate of ηP is essentially 0.

32Results from first-stage regressions indicate that these instruments are relevant, at least for the four
largest subsamples: materials prices and output prices are each spatially correlated.
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B.4 The industry-level elasticity of substitution

The previous subsection provided an estimate for the ease with which individual plants

substitute between material inputs and other inputs. This is related to, but distinct from,

how easily an industry substitutes between material inputs and other inputs.

Changes in the scale, across plants, potentially makes the industry-level elasticity of

substitution larger than the corresponding plant-level elasticity. The difference between the

plant-level and industry-level elasticities of substitution depends on a) the heterogeneity of

materials shares, within the industry, and b) how much inputs shift across plants, in response

to a change in relative factor prices.

Given the assumptions, specified in Section B.2, the industry-level elasticity of substi-

tution has a simple expression:33

εQ = χtI · ηD + (1− χtI) · ηP , where (23)

χtI ≡ 1

StI (1− StI). -, /
1�

·
'
i∈I



StI − MitP

in
it

MitP init +OitP
oth
it

�2
. -, /

2�

· MitP
mat
it +OitP

oth
it&

j∈IMjtPmatjt +OjtP othjt. -, /
3�

, and

StI ≡
'
i∈I

MitP
mat
it

MitPmatit +OitP othit

In words, the industry-level elasticity of substitution is a convex combination of the plant-

level elasticity of substitution and the plant-level elasticity of demand. The demand elasticity

parameterizes how sensitive the scale of the plant is to changes in its marginal cost of

production. Consider, for example, an increase in the price of the material input. The

marginal cost of production will increase more for plants with relatively large materials

cost shares. As a result, low-materials-share plants will produce relatively more of the

total industry output following the increase of the materials price. The elasticity of demand

determines how much less the high-materials-share plants will produce, following the increase

in the materials price.

The scope for this across-plant factor substitution depends on the dispersion of materials

intensities. According to Equation 23, the appropriate measure of the dispersion of materials

intensity is a weighted, normalized variance of the materials cost shares. The fraction of total

industry expenditures incurred by plant i (given in term 3�) is the appropriate weight for
summing over the within-industry deviation in materials cost shares (given in term 2�). The
normalization, given in term 1�, ensures the χtI lies within the unit interval.

What remains, then, is to provide estimates for the normalized variance of materials

33A proof is given in Oberfield and Raval (2015). See Appendix A of that paper.
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shares, χ, and the elasticity of demand, ηD, for the ten industries in my sample.

The normalized variance of materials shares, χ, ranges from 0.019 (for flour) to 0.065

(for sugar).34 Given these low values, the industry elasticity of substitution will closely track

the micro elasticity of substitution. In other words, the estimate of εQ will be, for the most

part, insensitive to the way in which ηD is estimated.

I estimate ηD via the regression defined by the following equation:

qit = φt + φ1 · log INCOMEΥt + ηD · pit + θit (24)

This specification, and the variable definitions, follow Foster, Haltiwanger, and Syverson

(2008). In Equation 24, INCOMEΥt is the aggregate income in establishment i’s market,

Υ, at time t. This variable is included to account for any differences in establishment scale

that may exist between areas of high and low density of economic activity.

A positive relationship between the demand shifter (θit) and output price (pit) poten-

tially induces a downward bias to the OLS estimates of ηD. Like Foster, Haltiwanger, and

Syverson (2008), I instrument pit with the marginal cost of plant i in year t. This instrumen-

tal variable is certainly relevant: plants with lower marginal costs have significantly lower

output prices. Validity of the instrument rests, then, on the orthogonality of marginal costs

and θit. Foster, Haltiwanger, and Syverson (2008) discuss two potential threats to the va-

lidity of the instrument (measurement error in plants’ marginal costs, and a selection bias

that induces a negative relationship between demand shocks and marginal costs), propose

robustness checks to assess the salience of these two threats, and find that their results are

similar across the different robustness checks.

The results of these regressions are presented in the fourth column of Table 9.35 In each

of the ten industries, the estimate for elasticity of demand is greater than 1, reassuringly

indicating that plants are pricing on the elastic portion of their demand curve.

Combining the estimates of ηP , ηD, and χ yields the object of interest: the industry-level

elasticity of substitution, εQ. Since there are three sets of estimates of ηP , there are also three

sets of estimates of εQ. For the estimates corresponding to the fixed effects regression, εQ
is 0.75 for the pooled sample.36 Except for sugar and coffee (two of the smallest industries,

34To give the reader some idea, the (unnormalized) standard deviations of materials shares range from 4.3
percent to 11.4 percent across the ten industries, again lowest for bulk milk and highest for raw cane sugar.
35The results reported here are slightly different from those in Foster, Haltiwanger, and Syverson (2008):

I restrict my sample to those plants for which I can observe materials prices, while Foster, Haltiwanger, and
Syverson make no such restriction. Their estimate of ηD is lower for petroleum (η̂D = 1.42) and higher for
ready-mix concrete (η̂D = 5.93). Again, because the normalized variances of materials shares are so small,
these differences have will have only a moderate impact on the estimates of εQ.
36One dissimilarity between the analysis of the current section and that of Sections 2 to 4 concerns the

industry definitions that I have used: to credibly compare the material purchases and material prices, I
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representing only 5 percent of the sample), the industry-level elasticities of substitution range

between 0.46 (for gasoline) and 0.82 (for corrugated boxes). For seven of the ten industries

in the sample (with the exceptions being the smallest three subsamples), the data would

reject a null hypothesis of εQ = 1.

The estimates of εQ that correspond to the instrumental-variables-based estimate of ηP
are smaller, though again much less precisely estimated. The point estimate for εQ is 0.1 for

the ready-mix concrete subsample, and is somewhat higher (between 0.40 and 0.55) for the

other three industries.

In summation, micro data on plants’ materials usage patterns indicate that material

inputs are gross complements to other factors of production. For most specifications (all

except for the IV specification for the ready-mix concrete subsample, or the fixed effects

specification for the smaller industries), the data indicate that εQ ranges between 0.4 and

0.8.

C Details of the data from outside the U.S.

The data from other countries come from two sources. The flows of intermediate inputs,

flows of goods output into final consumption expenditures, and industry-level prices are

collected in the World Input Output Tables (WIOT). The data on industries’ output are

compiled in the European Union KLEMSGrowth and Productivity Accounts (EUKLEMS).37

The EUKLEMS data are reviewed, in detail, in Timmer et al. (2007) and O’Mahony and

Timmer (2009). Flows of investment goods across industries are not available for other

countries. For this set of variables, I imputed values using data from the U.S.

Of the thirty countries that are included in the EUKLEMS dataset, I restrict my analysis

to six: Denmark, France, Italy, Japan, the Netherlands, and Spain. Many of the countries

that I discarded are Eastern Bloc countries–such as Latvia, Lithuania, and Poland–for

which pre-1990 data are unavailable. There are other countries, such as England, for which–

for at least half of the sample period–intermediate input purchases and gross output are

imputed from value added data. Data from all countries span 1970 to 2007, with the excep-

define products narrowly in this section. At the same time, limitations of the dataset necessitate a rather
coarse industry definition in Sections 2 to 4. Going from a narrow to coarse industry classification should
not systematically alter the estimates of ηP or ηD, but will cause an increase in the estimate for the within-
industry variation in materials cost shares, χ. For this reason, a coarser industry classification would, in
turn, lead to a larger estimate of εQ. As it turns out, the overall estimate of εQ is not particularly sensitive
to the value of χ: Doubling the value of χ increases the OLS-based estimate of εQ from 0.61 to 0.67, and
increases the fixed-effects-based estimate from 0.75 to 0.80.
37The data can be downloaded at http://www.euklems.net/ . In this section I use the ISIC Rev. 3 edition

of the data.
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# Name Denmark France Italy Japan Netherlands Spain U.S. Ind.
1 Agriculture 0.027 0.029 0.022 0.010 0.036 0.039 1
2 Mining 0.007 0.002 0.001 0.000 0.010 0.001 2,3
3 Food and Tobacco 0.103 0.061 0.065 0.069 0.098 0.085 5
4 Textiles and Leather 0.018 0.025 0.069 0.019 0.020 0.039 6, 7
5 Wood Products 0.007 0.002 0.003 0.002 0.004 0.002 8, 9
6 Paper and Publishing 0.017 0.014 0.015 0.002 0.022 0.015 10, 11
7 Petroleum Refining 0.012 0.011 0.013 0.010 0.024 0.016 13
8 Chemicals 0.040 0.047 0.037 0.016 0.073 0.038 12
9 Rubber and Plastics 0.013 0.009 0.012 0.005 0.012 0.008 14
10 Stone, Clay, and Glass 0.007 0.005 0.010 0.002 0.006 0.008 15
11 Metal products 0.021 0.018 0.024 0.015 0.029 0.020 16, 17
12 Non-Electrical Machinery 0.047 0.024 0.048 0.028 0.026 0.018 18
13 Electrical Machinery 0.038 0.039 0.027 0.042 0.040 0.024 19, 22
14 Transportation Equipment 0.026 0.065 0.040 0.040 0.034 0.074 20, 21
15 Misc. Manufacturing 0.024 0.013 0.024 0.007 0.018 0.020 23
16 Utilities 0.021 0.037 0.016 0.017 0.017 0.015 26
17 Construction 0.010 0.006 0.008 0.000 0.006 0.006 4
18 Wholesale and Retail 0.073 0.078 0.109 0.137 0.070 0.075 27
19 Hotels and Restaurants 0.020 0.031 0.051 0.048 0.021 0.106 28
20 Transport and Warehousing 0.060 0.038 0.048 0.043 0.062 0.037 24
21 Communications 0.010 0.010 0.012 0.014 0.012 0.012 25
22 Finance and Insurance 0.021 0.032 0.026 0.032 0.032 0.015 28
23 Real Estate 0.086 0.100 0.072 0.127 0.060 0.069 28
24 Business Services 0.015 0.030 0.018 0.009 0.052 0.017 29
25 Government 0.071 0.096 0.079 0.105 0.079 0.076 30
26 Education 0.058 0.056 0.053 0.060 0.035 0.052 29
27 Health and Social Work 0.111 0.087 0.065 0.082 0.070 0.066 29
28 Other Personal Services 0.038 0.035 0.032 0.058 0.030 0.048 29

Table 10: Industry definitions and consumption shares in the EUKLEMS dataset.
Notes: The final column shows the correspondence between the EUKLEMS industry definitions and the
industry definitions for the U.S. data.
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Figure 5: Relationship between changes in intermediate input purchases and intermediate
input prices.
Notes: For each downstream industry, J , I take the most important (highest average intermediate input

expenditure share) supplier industry, I. The x-axis of each panel gives Δlog
�
PtI
P in
tJ

	
. The y-axis gives, for

each industry, changes in the fraction of industry J ’s intermediate input expenditures that go to industry I.
I compute and plot a local polynomial curve of this relationship, for each industry.

tion of Japan, whose sample begins in 1973.

The industry definitions in the EUKLEMS database differ from those in the U.S. dataset.

Service industries are more finely defined. For example, F.I.R.E. is now broken out between

finance and insurance on the one hand and real estate on the other. Mining and manufac-

turing industries are more coarse. Table 10 describes the EUKLEMS industry classification,

in addition to the consumption shares of each of the 28 industries. The main takeaway from

this table is that the six countries are broadly similar in their industry compositions.

D Sensitivity analysis related to Section 3

D.1 Additional Plots

Figure 5 depicts the smoothed relationship between Δ log
�
PtIMt,I→J

P intJMtJ

	
and Δ log

�
PtI
P intJ

	
,

for each industry J and J ’s most important supplier industry. The takeaway from this figure
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Figure 6: Relationship between changes in purchases of the intermediate input bundle and
the relative price of the intermediate input bundle.
Notes: For each industry, J , I plot the relationship between changes in its cost share of intermediate inputs
on the y-axis, and changes in the difference between the price of the intermediate input bundle and the
marginal cost of production on the x-axis. I compute and plot a local polynomial curve of this relationship
for each industry.

is that the relationships depicted in Figure 1 are broadly consistent with of the relationships

within all 30 industries.

Figure 6 depicts the smoothed relationship between Δ log
�
P intJMtJ

PtJQtJ

	
and Δ log

�
P intJ
PtJ

	
.

Here, the relationship between intermediate input cost shares and the price of intermediate

inputs is positive for some industries, negative for others.

D.2 Different samples, changing the period length and industry

classification

In this section, I re-estimate Equation 13 using different samples. First, in Table 11,

I examine whether the estimates of the production elasticities, εQ and εM , differ according

to the industry classification scheme or the period length. In the first four columns, the

economy is broken up into nine industries; in the next four columns, a 67-industry classi-

fication is applied. The main takeaway from this table is that the estimates of εM , as in

43



the original specifications, are close to 0, independent of how industries are defined. For

longer period lengths, the estimated elasticity of substitution among intermediate inputs is

somewhat higher; the elasticity of substitution between value added and intermediate inputs

is somewhat lower. The IV results are unreported for this last robustness check, since the

instruments are both weak and lead one to reject the Wu-Hausman test.

Next, in Table 12, I estimate the production elasticities separately for different broad

sectors. The Primary sector consists of the first three industries in Table 7. The Manufactur-

ing sector consists of the Construction and all manufacturing industries, the fourth through

twenty-third industries according to Table 7. The remaining industries are in the Services

sector. Estimates of εM are similar across sectors. Estimates of εQ, though less precisely

estimated, are somewhat larger for the Primary sector and lower for the Services sector.

As a third set of robustness checks, I assess in Table 13 whether the number of upstream

industries used in the sample alters the estimates of εM and εQ. In the benchmark regressions,

in Table 1, the sample included the top ten upstream industries for each downstream industry

J . There are no clear patterns, regarding the relationship between estimates of εQ and εM
and the broadness of the sample.

D.3 Production elasticities of substitution in other countries

In this subsection, I report on results from other countries. I apply data from the World

Input Output Tables, taking data from 1997 to 2011. The industry definitions, similar those

used for the U.S. data, are given in Table 10. In Table 14, I report on regressions that relate

changes in the inputs’ cost shares with changes in the prices of individual inputs and prices

of the intermediate input bundles. Unfortunately, for these countries, changes in military

expenditures are not a sufficiently powerful source of variation to permit an IV regression.

In this table, the slope of the relationship of changes in the intermediate input cost share

on Δ logP intJ − Δ logPtI is approximately 0.3 for France and between 0.6 and 0.8 for all

other countries. In addition, the slope of the relationship of intermediate input purchases

on Δ logPtJ −Δ logP intJ is 0.10 for Denmark and between 0.4 and 0.8 for all other countries.

While the coefficient estimates reported in 14 cannot identify εQ or εM on their own, they

accord with the OLS estimates for the United States.

E Sensitivity analysis related to Section 4

In the first columns of Table 15, I re-estimate the correlations among shocks for different

parts of the sample period. For the most part, the correlations among the ω productivity
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Second stage regression results
εM 0.17 0.13 0.20 0.22 0.16 0.12 -0.06 -0.03 0.29 0.29

(0.05) (0.05) (0.28) (0.27) (0.03) (0.03) (0.22) (0.24) (0.07) (0.07)
εQ 1.08 1.13 0.55 1.19 1.03 1.13 1.03 1.09 0.95 0.95

(0.08) (0.08) (0.55) (0.38) (0.05) (0.05) (0.66) (1.04) (0.12) (0.12)
First stage: Dependent variable is Δ logP intJ −Δ logPtI
military spending -0.56 -0.55 -0.44 -0.37
shocktI (0.06) (0.06) (0.03) (0.03)
military spending 0.62 0.69 0.53 0.76
shocktJ ’s suppliers (0.09) (0.12) (0.04) (0.06)
military spending -0.05 -0.06 0.01 -0.02
shocktJ (0.07) (0.07) (0.03) (0.03)
F-statistic 32.29 14.92 88.57 29.78
First stage: Dependent variable is Δ logPtJ −Δ logP intJ
military spending -0.11 0.01 -0.07 -0.05
shocktI (0.04) (0.04) (0.02) (0.02)
military spending -0.18 0.19 -0.09 0.00
shocktJ ’s suppliers (0.07) (0.08) (0.03) (0.04)
military spending 0.30 0.27 0.11 0.09
shocktJ (0.05) (0.05) (0.02) (0.02)
F-statistic 17.83 13.36 21.37 26.92
Cragg-Donald
Statistic

15.34i 27.60i 21.37i 8.35

Wu-Hausman
test p-value

0.59 0.90 0.70 0.87

Sample Coarse Industries Fine Industries
Period Length
= 2 Years

Year Fixed
Effects

No Yes No Yes No Yes No Yes No Yes

N 2400 2400 2296 2296 10720 10720 10496 10496 1296 1296

Table 11: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries J , and, for each industry J , the top ten supplying
industries, I. In the row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a weak instrument
is rejected at the 10 percent threshold. The "military spending shocktJ ’s suppliers" term refers to the cost-
weighted average of the "military spending shocktI" term, averaging over industry J ’s suppliers.
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Second stage regression results
εM 0.02 -0.38 -0.35 -0.27 -0.27 -0.04 0.26 0.39 0.35

(0.11) (0.36) (0.35) (0.05) (0.28) (0.36) (0.08) (0.48) (0.43)
εQ 1.41 1.44 1.64 1.35 1.55 0.49 0.02 0.93 0.90

(0.10) (0.36) (0.42) (0.09) (1.15) (0.74) (0.15) (0.91) (0.89)
First stage: Dependent variable is Δ logP intJ −Δ logPtI
military spending -1.39 -1.43 -0.58 -0.48 -0.76 -0.77
shocktI (0.20) (0.21) (0.07) (0.08) (0.13) (0.13)
military spending 1.55 -0.06 0.97 1.21 0.92 0.93
shocktJ ’s suppliers (0.49) (1.41) (0.11) (0.13) (0.22) (0.26)
military spending -0.09 0.46 -0.25 -0.25 -0.22 -0.26
shocktJ (0.27) (0.52) (0.08) (0.08) (0.27) (0.31)
F-statistic 16.78 4.59 38.36 11.41 13.13 3.20
First stage: Dependent variable is Δ logPtJ −Δ logP intJ
military spending 0.01 0.02 -0.16 0.03 0.03 -0.03
shocktI (0.22) (0.19) (0.04) (0.04) (0.07) (0.06)
military spending -0.59 -3.03 0.12 0.55 -0.46 -0.73
shocktJ ’s suppliers (0.52) (1.31) (0.06) (0.07) (0.12) (0.12)
military spending 0.94 1.81 -0.04 -0.03 0.27 0.00
shocktJ (0.29) (0.49) (0.04) (0.04) (0.15) (0.14)
F-statistic 15.36 13.36 7.99 21.98 12.15 26.54
Cragg-Donald
Statistic

15.25i 12.79 6.02 11.42 11.39 12.73

Wu-Hausman
test p-value

0.49 0.50 0.98 0.37 0.53 0.99

Sector Primary Manufacturing Services
Year Fixed Effects No No Yes No No Yes No No Yes
N 480 480 480 3200 3200 3200 1120 912 912

Table 12: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries I-J that, for each industry J , I include J ’s top ten
supplying industries, I. In the row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a weak
instrument is rejected at the 10 percent threshold. The "military spending shocktJ ’s suppliers" term refers to
the cost-weighted average of the "military spending shocktI" term, averaging over industry J ’s suppliers.
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Second stage regression results
εM -0.14 -0.09 -0.05 -0.06 -0.10 -0.08

(0.23) (0.25) (0.19) (0.19) (0.16) (0.16)
εQ 0.82 0.42 0.73 0.88 0.98 0.88

(0.56) (0.46) (0.45) (0.36) (0.41) (0.33)
First stage: Dependent variable is Δ logP intJ −Δ logPtI
military spending shocktI -0.89 -0.86 -0.86 -0.80 -0.81 -0.74

(0.09) (0.09) (0.07) (0.07) (0.05) (0.06)
military spending 0.82 0.95 1.02 1.22 1.15 1.35
shocktJ ’s suppliers (0.13) (0.17) (0.10) (0.13) (0.09) 0.12)
military spending shocktJ 0.11 0.11 -0.12 -0.13 -0.20 -0.22

(0.09) (0.09) (0.07) (0.07) (0.06) 0.06)
F-statistic 41.09 10.84 63.80 15.01 95.92 20.11
First stage: Dependent variable is Δ logPtJ −Δ logP intJ
military spending shocktI -0.17 -0.10 -0.14 -0.03 -0.12 0.02

(0.07) (0.07) (0.05) (0.05) (0.03) 0.03)
military spending -0.28 0.14 -0.29 0.11 -0.30 0.10
shocktJ ’s suppliers (0.10) (0.13) (0.07) (0.09) (0.05) 0.07)
military spending shocktJ 0.40 0.36 0.38 0.35 0.38 0.35

(0.07) (0.07) (0.05) (0.05) (0.04) 0.04)
F-statistic 12.38 5.11 22.81 9.80 43.52 18.17
Cragg-Donald Statistic 9.43 13.55i 21.57i 32.33i 42.18i 62.21i

Wu-Hausman test p-value 0.85 0.32 0.56 0.56 0.37 0.16
Year Fixed Effects No Yes No Yes No Yes
Upstream Industries per
downstream industry×year 4 4 8 8 15 15

N 1856 1856 3680 3680 6832 6832

Table 13: Regression results related to Equation 13.
Notes: The overall sample includes pairs of industries J , and, for each industry J , the top two supplying
industries, I in the first four columns, and the top four supplying industries in the final four columns. In the
row labeled "Cragg-Donald Statistic", an "i" indicates that the test for a weak instrument is rejected at the
10 percent threshold. The "military spending shocktJ ’s suppliers" term refers to the cost-weighted average of
the "military spending shocktI" term, averaging over industry J ’s suppliers.

εM 0.28 0.36 0.70 0.19 0.42 0.30
(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)

εQ 0.11 0.56 0.71 0.81 0.79 0.47
(0.06) (0.05) (0.04) (0.05) (0.04) (0.05)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
N 3920 3920 3920 3920 3920 3920
Country DNK ESP FRA ITA JPN NLD

Table 14: Regression results related to Equation 13.
Notes: This table contains OLS specifications, using ten input-supplying industries per downstream industry.
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Bench
-mark

1960-
1983

1984-
2012

1960-
2007

Period Length
is 2 years

Durable
Goods

R2 (sectoral shocks)
(εM , εD, εQ) = (1, 1, 1) 0.21kf 0.32kf 0.21
(εM , εD, εQ) =

�
1, 1, 4

5

�
0.19kf 0.29kf 0.19

(εM , εD, εQ) =
�
1
10
, 1, 4

5

�
0.81 0.81 0.97kf

(εM , εD,εQ) =
�
1
10
, 2
3
, 1
�

0.99kf 1.00kf 0.91kf

(εM , εD,εQ) =
�
1
10
, 1, 1

�
0.83 0.94 0.98kf

(εM , εD,εQ) =
�
1
10
, 4
3
, 1
�

0.59 0.71 0.92kf

ρ̄ (ω)
(εM , εD, εQ) = (1, 1, 1) 0.19kf 0.19kf 0.19kf 0.17kf 0.18 0.20
(εM , εD, εQ) =

�
1, 1, 4

5

�
0.21kf 0.21kf 0.20kf 0.18kf 0.19 0.22

(εM , εD, εQ) =
�
1
10
, 1, 4

5

�
0.06 0.06 0.09 0.06 0.05kf 0.06kf

(εM , εD,εQ) =
�
1
10
, 2
3
, 1
�

0.04kf 0.03kf 0.04kf 0.03kf 0.04kf 0.05kf

(εM , εD,εQ) =
�
1
10
, 1, 1

�
0.06 0.05 0.07 0.05 0.06kf 0.06kf

(εM , εD,εQ) =
�
1
10
, 4
3
, 1
�

0.08 0.07 0.07 0.07 0.08 0.06kf

Table 15: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD, εM ,
and εQ.
Notes: I could not compute R2(sectoral shocks) in the second, third, and fifth columns, as there are fewer
time periods than there are industries in these samples. A "kf" indicates the use of the Kalman filter, as
opposed to direct applications of Equation 11, to infer the ω productivity shocks.

shocks are similar in the first half and the second half of the sample. (Unfortunately, since

there are fewer time periods in either of the two halves of the sample than there are indus-

tries, I cannot compute the first factor of the industries’ productivity shocks to assess the

contribution of common productivity shocks to aggregate volatility.) In the fourth column,

I exclude the Great-Recession period from the sample. Here, the assessed role of industry-

specific shocks is somewhat larger. The fifth column applies biennial data. The final column

incorporates good durability, in which I allow for certain industries’ outputs to depreciate

over a number of periods. In this column, I set δCJ = 1 for all nondurable industries and

δCJ = 0.4 for durable industries. In this column, sectoral shocks now constitute a larger

fraction of aggregate volatility when εM = 1
10
.38

A final set of robustness check considers the sensitivity of the main results to the

de-trending procedure.39 In the benchmark calculations, I had linearly de-trended each

38These depreciation rates are considerably larger than have been estimated elsewhere by, for example,
Hulten and Wykoff (1981). Unfortunately, applying lower depreciation rates would lead to exceedingly large
eigenvalues of (Π3)

−1
Π2.

39In estimations of dynamic general equilibrium models, the choice of the de-trending procedure is poten-
tially important; see Canova (2014). An alternative–intuitively appealing but unfortunately infeasible–way
to deal with trends would be to include both transitory and permanent shocks in the model. This would obvi-
ate the need to de-trend the data before estimation; the parameters governing the permanent and transitory
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De-trending Method Benchmark None
Hodrick-
Prescott

Linear, Break
in 1983

Linear, Censor
Outliers

R2 (sectoral shocks)
(εM , εD, εQ) = (1, 1, 1) 0.21kf 0.22kf 0.22kf 0.20kf 0.22kf

(εM , εD, εQ) =
�
1, 1, 4

5

�
0.19kf 0.20kf 0.19kf 0.18kf 0.20kf

(εM , εD, εQ) =
�
1
10
, 1, 4

5

�
0.81 0.80 0.70 0.79 0.85

(εM , εD,εQ) =
�
1
10
, 2
3
, 1
�

0.99kf 0.99kf 0.99kf 0.99kf 1.00kf

(εM , εD,εQ) =
�
1
10
, 1, 1

�
0.83 0.83 0.76 0.82 0.77

(εM , εD,εQ) =
�
1
10
, 4
3
, 1
�

0.59 0.58 0.53 0.57 0.60
ρ̄ (ω)
(εM , εD, εQ) = (1, 1, 1) 0.19kf 0.19kf 0.20kf 0.20kf 0.20kf

(εM , εD, εQ) =
�
1, 1, 4

5

�
0.21kf 0.21kf 0.21kf 0.21kf 0.21kf

(εM , εD, εQ) =
�
1
10
, 1, 4

5

�
0.06 0.05 0.05 0.06 0.06

(εM , εD,εQ) =
�
1
10
, 2
3
, 1
�

0.04kf 0.04kf 0.04kf 0.04kf 0.03kf

(εM , εD,εQ) =
�
1
10
, 1, 1

�
0.06 0.05 0.06 0.06 0.05

(εM , εD,εQ) =
�
1
10
, 4
3
, 1
�

0.08 0.08 0.07 0.08 0.07

Table 16: Robustness checks: R2(sectoral shocks) and ρ̄(ω) for different values of εD, εM ,
and εQ.
Notes: A "kf" indicates the use of the Kalman filter, as opposed to direct applications of Equation 11, to
infer the ω productivity shocks.

industry-level observable before performing the filtering exercise. In Table 16, I consider

three alternate de-trending procedures: not de-trending the data, a Hodrick-Prescott filter,

and a linear trend with a break in the trend at 1983. These de-trending procedures have

almost no quantitative impact on the relative contribution of sectoral vs. common shocks

to aggregate volatility. Finally, censoring outlier observations (those industry-year output

growth rates in the top or bottom centile) does not alter the estimated importance of sectoral

shocks.

F Solution of the model filter

This section spells out the solution of the model. First, I write out the constrained max-
imization problem of a social planner. I take first-order conditions, write out the conditions
that characterize the steady state, log-linearize around the steady state, solve for the policy
functions, and then for the model filter. We allow not only for factor neutral productivity
shocks (as used throughout the paper), but also labor-augmenting productivity shocks, as

shock processes would be jointly estimated in a single stage. I do not pursue this approach, mainly because
of the difficulty of scaling the model by the permanent shocks. Doing so requires a clean characterization of
the changes in the industry-level observable variables as functions of the permanent shocks, something that
exists only for a few special cases of the model (such special cases can be found in, for example, Ngai and
Pissarides 2007 and Acemoglu and Guerreri 2008).
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in the specification in Table 4.

F.1 First order conditions and steady-state shares

Since this economy satisfies the welfare theorems, it will suffice to solve the social plan-
ner’s problem. Begin with the Lagrangian:

L = E0
∞'
t=0

βt

⎧⎨⎩log
⎡⎣� N'

J=1

(ξJ)
1
εD (δCJ · CtJ)

εD−1
εD

� εD
εD−1

⎤⎦
− εLS
εLS + 1

�
N'
J=1

LtJ

� εLS+1

εLS

+

N'
J=1

P invtJ [XtJ + (1− δK)KtJ −Kt+1,J ]

+

N'
J=1

PtJ

�
QtJ + (1− δCJ )CtJ − Ct+1,J −

N'
I=1

[Mt,J→I +Xt,J→I ]

��
. (25)

Here, P invtJ is the Lagrange multiplier on a unit of capital, and PtJ is the Lagrange multiplier
on the good-J market-clearing condition.

This Lagrangian incorporates durability for some consumption goods, something that
was ignored in the body of the paper. The Lagrangian reflects a representative consumer
who has preferences given by the following utility function:

U =
∞'
t=0

βt log

⎡⎣� N'
J=1

(ξJ)
1
εD (δCJ · CtJ)

εD−1
εD

� εD
εD−1

⎤⎦− εLS
εLS + 1

�
N'
J=1

LtJ

� εLS+1

εLS

The demand parameters, ξJ , again reflect time-invariant differences in the importance of
industries’ goods in the consumer’s preferences. Now, CtJ equals the stock of durable goods
when J is a durable-good-producing industry and equals the expenditures on good/service
J otherwise. For durable goods, J , the evolution of the stock of each consumption good CtJ
is given by

Ct+1,J = CtJ (1− δCJ ) + C̃tJ ,
where C̃tJ equals the consumer’s new purchases on good J at time t and δCJ parameterizes
the depreciation rate of good J .

I re-state the expression for QtJ :

QtJ = AtJ ·

⎡⎢⎣(1− μJ) 1
εQ

�

KtJ

αJ

�αJ 
LtJ ·BtJ
1− αJ

�1−αJ� εQ−1
εQ

+ (μJ)
1
εQ (MtJ)

εQ−1
εQ

⎤⎥⎦
εQ

εQ−1

.

(26)
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The first-order conditions for the planner are:

Kt+1,J = XtJ + (1− δK) ·KtJ

[CtJ ] : Pt−1,J − βPtJ (1− δCJ ) = β (ξJ)
1
εD (δCJ )

εD−1
εD × (27)

(CtJ)
− 1
εD

�
N'
I=1

(ξI)
1
εD (δCI · CtI)

εD−1
εD

�−1
. (28)

[Mt,I→J ] :
PtI
PtJ

= (AtJ)
εQ−1
εQ



QtJ · μJ
MtJ

� 1
εQ



MtJ · ΓMIJ
Mt,I→J

� 1
εM

. (29)

[Xt,I→J ] : PtI = P
inv
tJ



XtJ · ΓXIJ
Xt,I→J

� 1
εX

. (30)

[LtJ ] :

�
N'
J �=1

LtJ �

� 1
εLS

= PtJ · (AtJ)
εQ−1
εQ BtJ (QtJ (1− μJ))

1
εQ × (31)



KtJ

αJ

�αJ εQ−1εQ



LtJ ·BtJ
1− αJ

�αJ−1−αJ εQ
εQ

.

[Kt+1,J ] : P invtJ = β · Et
�
Pt+1,J (Qt+1,J (1− μJ))

1
εQ (At+1,J)

εQ−1
εQ (32)

×


Kt+1,J

αJ

�−1+αJ · εQ−1εQ



Lt+1,J ·Bt+1,J
1− αJ

�(1−αJ )· εQ−1εQ

⎤⎦
+β(1− δK)Et

�
P invt+1,J

�
.

Towards the goal of solving for the steady-state, drop time subscripts and re-arrange.
Also, employ the normalization that steady-state labor is the numeraire good (so that
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&N
J �=1 L

1
εLS

J � = 1) :

δKKJ = XJ

1− β (1− δCJ )
β

PJ = (ξJ)
1
εD · (δCJ )

εD−1
εD (CJ)

− 1
εD

�
N'
I=1

(ξI)
1
εD (δCI · CI)

εD−1
εD

�−1
PI
PJ

=



QJ · μJ
MJ

� 1
εQ



MJ · ΓMIJ
MI→J

� 1
εM

P invJ = PI



XJ · ΓXIJ
XI→J

�− 1
εX

1 = PJ (QJ (1− μJ))
1
εQ



KJ

αJ

�αJ · εQ−1εQ



LJ

1− αJ

�(1−αJ )· εQ−1εQ
−1

QJ =

⎡⎢⎣(1− μJ) 1
εQ

�

KJ

αJ

�αJ 
 LJ
1− αJ

�1−αJ� εQ−1
εQ

+ (μJ)
1
εQ (MJ)

εQ−1
εQ

⎤⎥⎦
εQ

εQ−1

(33)

First, I will solve for the prices of each industry’s good, in the steady state, PJ . This
will follow from each industry’s cost-minimization condition.

Take the cost-minimization condition for capital, which equates the rental price of a
unit of capital to the marginal revenue product of capital:

1− β(1− δK)
β

('
ΓXIJ (PI)

1−εX
)1/(1−εX)

= PJ (QJ (1− μJ))
1
εQ



KJ

αJ

�αJ · εQ−1εQ
−1


LJ
1− αJ

�(1−αJ )· εQ−1εQ

(34)
Second, take cost-minimizing condition for industry J ’s intermediate input purchases:

(μJ)
1
εQ (MJ)

εQ−1
εQ = μJ (QJ)

εQ−1
εQ



P inJ
PJ

�1−εQ
(35)

And, third, the following equation takes the cost-minimizing choice of the capital-labor
aggregate.

(1− μJ)
1
εQ

�

KJ

αJ

�αJ 
 LJ
1− αJ

�1−αJ� εQ−1
εQ

= (1− μJ) (QJ)
εQ−1
εQ × (36)

⎛⎝
�
1−β(1−δK)

β

	αJ �&
ΓXIJ (PI)

1−εX�αJ/(1−εX)
PJ

⎞⎠1−εQ
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Plug Equations 34-36 into Equation 33.

(PJ)
1−εQ = (1− μJ)

�
β−1 − (1− δK)

�αJ(1−εQ) �'
I

ΓXIJ (PI)
1−εX

�αJ 1−εQ1−εX
(37)

+ μJ

�'
I

ΓMIJ (PI)
1−εM

� 1−εQ
1−εM

Equation 37 describes and N×N system of equations for the N steady-state price levels.
This completes the first part of the characterization of the steady state.

For the second part, consider the market clearing condition for good J :

QJ = δCJCJ +
N'
I=1

(MJ→I +XJ→I) (38)

Below, I will write out the terms on the right-hand-side of Equation 38 in terms of the
steady state prices (which have just been solved for):

First, write out the consumption of good J .

(1− β (1− δCJ ))
β

PJ = (ξJ)
1
εD · (δCJ )

εD−1
εD (CJ)

− 1
εD

�
N'
I=1

(ξI)
1
εD (δCI · CI)

εD−1
εD

�−1

δCJCJ = ξJ (δCJ )
εD



1− β (1− δCJ )

β

�−εD
(PJ)

−εD C̄1−εD , (39)

where C̄ is the aggregate consumption bundle, defined as the final term in parentheses on
the first line raised to the 1/ (1− εD) power.

Then write out the intermediate input purchases from industry J to industry I

MJ→I = (QIμI)
εM
εQ · (MI)

εQ−εM
εM ΓMJI ·



PI
PJ

�εM
= QIμIΓ

M
JI (PJ)

−εM �P inI �εM−εQ (PI)εQ
= QIμIΓ

M
JI (PJ)

−εM
�'

J �
ΓMJ �I (PJ �)

1−εM
� εM−εQ

1−εM
(PI)

εQ (40)

And, finally, write out the investment input purchases from industry J sold to industry
I. Begin by writing out the total investment purchases of industry J .


KJ

αJ

�
=



1− β(1− δK)

β

('
ΓXIJ (PI)

1−εX
) 1
1−εX

�−1+αJ(1−εQ)
(1− μJ)QJ (PJ)εQ

XJ = (1− μJ)QJαJδK


1− β(1− δK)

β

('
ΓXIJ (PI)

1−εX
) 1
1−εX

�−1+αJ(1−εQ)
(PJ)

εQ
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So:

XJ→I = XI · ΓXJI ·


PJ
P invI

�−εX
= XI · ΓXJI · (PJ)−εX

�
P invI

�εX
= QI (1− μI)αIδK



1− β(1− δK)

β

�−1+αI(1−εQ)
ΓXJI×

�'
J �

ΓXJ �I (PJ �)
1−εX

� εX−1+αI(1−εQ)
1−εX

(PJ)
−εX (PI)

εQ (41)

Plug in the expressions (Equations 39-41) into the market clearing condition (Equation
38):

QJ −
N'
I=1

Γ̃JIQI = ξJ (δCJ )
εD



1− β (1− δCJ )

β

�−εD
(PJ)

−εD C̄1−εD

where

Γ̃JI = (PI)
εQ ×

⎧⎪⎨⎪⎩μIΓMJI
�'
J �

ΓMJ �I (PJ �)
1−εM

� εM−εQ
1−εM

(PJ)
−εM

+(1− μI)αIδK


1− β(1− δK)

β

�−1+αI(1−εQ)
ΓXJI

�'
J �

ΓXJ �I (PJ �)
1−εX

�−1+αI 1−εQ1−εX
(PJ)

−εX

⎫⎪⎬⎪⎭
We can solve for the Q vector using linear algebra. From here, we can solve for the
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steady state shares:

LJ = QJ (1− αJ) (1− μJ) (PJ)εQ


1− β (1− δK)

β
P invJ

�αJ(1−εQ)
(42)

CJ = ξJδ
εD−1
CJ

C̄1−εD


1− β (1− δCJ )

β

�−εD
(PJ)

−εD

SCI =
(ξI)

1
εD (δCI · CI)

εD−1
εD&

(ξI�)
1
εD

�
δCI�CI�

� εD−1
εD

(43)

MJ→I
QJ

= (QJ)
−1QIμIΓ

M
JI

�
P inI
�εM−εQ (PJ)−εM (PI)εQ

XJ→I
QJ

= (QJ)
−1QI (1− μI)αIδK



1− β(1− δK)

β

�−1+αI(1−εQ)
ΓXJI×

�'
J �

ΓXJ �I (PJ �)
1−εX

� εX−1+αJ(1−εQ)
1−εX

(PJ)
−εX (PI)

εQ

�
S1X
�
IJ
= ΓXIJ



P invJ

PI

�εX−1
(44)

�
S1M
�
IJ
= ΓMIJ



P inJ
PI

�εM−1
(45)

Clearly, these equations depend on QJ and the steady-state prices. Note that, however,
these figures have already been solved for. For future reference, define S̃QM as the matrix that
has, in its J , I entry, the fraction of good J that is sold to industry I as an intermediate
input:

(
S̃QM

)
JI
≡ MJ→I

QJ
. Similarly, define

(
S̃QX

)
JI
≡ XJ→I

QJ
. Equation 42 characterizes the

share of labor that is employed in industry J , in the steady state. Use S̃L as the N × N
matrix that has, in its J th column, this steady-state share. Also for future reference, define
S̃CI as the matrix that has SCI (as given in Equation 43) in its I th column. And, finally,

use
(
S̃QC

)
J
to denote the share of good J that is consumed (which can be computed by

subtracting the sum of the
(
S̃QM

)
IJ
and

(
S̃QX

)
IJ
from 1.)

F.2 Log linearization

The log linearization of the first order conditions are rather straightforward to derive.
Below, I will derive Equations 46 and 47. In all of these equations, a lower-case letter with
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the circumflex (^) denotes log-deviation from the steady state.

x̂tJ = δ
−1
K k̂t+1,J + (1− δ−1K )k̂tJ

q̂tJ = δ
−1
CJ
SQCJ ĉt+1J +

�
1− δ−1CJ

�
SQCJ ĉtJ (46)

+

N'
I=1

�
SQM,J→Im̂tJ→I + S

Q
X,J→I x̂tJ→I

	
1

1− β (1− δCJ )
p̂tJ − β (1− δCJ )

1− β (1− δCJ )
p̂t+1,J ≈ − 1

εD
ĉt+1J (47)

−
'
I

(ξI)
1
εD (δCI · CI)

εD−1
εD&

I� (ξI�)
1
εD

�
δCI�CI�

� εD−1
εD

�
εD − 1
εD

ĉt+1,I




p̂tI − p̂tJ = εQ − 1
εQ

âtJ +
1

εQ
q̂tJ +



1

εM
− 1

εQ

�
m̂tJ − 1

εM
m̂t,I→J

p̂tI = p̂
inv
tJ +

1

εX
(x̂tJ − x̂t,I→J)

1

εLS

N'
J �=1

SLJ l̂tJ = p̂tJ +
εQ − 1
εQ

âtJ +
(εQ − 1) (1− αJ)

εQ
b̂tJ

+
1

εQ
q̂tJ + αJ

εQ − 1
εQ

k̂tJ +
αJ − 1− αJ · εQ

εQ
l̂tJ

1

1− β (1− δK) p̂
inv
tJ −

β (1− δK)
1− β (1− δK) p̂

inv
t+1J = p̂t+1,J +

1

εQ
q̂t+1,J

+
εQ − 1
εQ

ât+1,J +
(εQ − 1) (1− αJ)

εQ
b̂t+1,J

+
(εQ − 1) (1− αJ)

εQ
l̂t+1,J +

�
−1 + αJ · εQ − 1

εQ



k̂t+1,J

q̂tJ = âtJ + αJ (1− SMJ
) k̂tJ + (1− αJ) (1− SMJ

) b̂tJ

+ (1− αJ) (1− SMJ
) l̂tJ + SMJ

m̂tJ

To derive Equation 46, take the market clearing condition for good J ,

log [exp q̂tJ ] = log

�
− (1− δCJ )SQCJ exp ĉt,J + SQCJ exp ĉt+1,J +

N'
I=1

SQM,J→I exp m̂tJ→I + S
Q
X,J→I exp x̂tJ→I

�

≈ SQCJδ−1CJ ĉt+1,J + SQCJ
�
1− δ−1CJ

�
ĉtJ +

N'
I=1

SQM,J→Im̂tJ→I + S
Q
X,J→I x̂tJ→I
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The following set of calculations yield Equation 47:

PJ

�
1

β

Pt−1,J
PJ

− PtJ
PJ

(1− δCJ )


= (ξJ)

1
εD (δCJ )

εD−1
εD (CJ)

− 1
εD (exp {ĉtJ})−

1
εD ×�

N'
I=1

(ξI)
1
εD (δCI · CtI)

εD−1
εD

�−1
1

1− β (1− δCJ )
exp p̂t−1,J − β (1− δCJ )

1− β (1− δCJ )
exp p̂tJ = (exp ĉtJ)

− 1
εD ×⎛⎝ N'

I=1

(ξI)
1
εD (δCI · CI)

εD−1
εD&

(ξI�)
1
εD

�
δCI�CI�

� εD−1
εD

exp {ĉtI}
εD−1
εD

⎞⎠−1

1

1− β (1− δCJ )
p̂t−1J − β (1− δCJ )

1− β (1− δCJ )
p̂tJ ≈ − 1

εD
ĉtJ

−
' (ξI)

1
εD (δCI · CI)

εD−1
εD&

(ξI�)
1
εD

�
δCI�CI�

� εD−1
εD

�
εD − 1
εD

ĉtI




Write the log-linearized equations, as given in the beginning of the subsection, in matrix
form.

k̂t+1 = δKX̂t + (1− δK) k̂t
q̂t = δ

−1
C S̃

Q
C ĉt+1 +

�
I− δ−1C

�
S̃QC ĉt + S̃

Q
X x̂t + S̃

Q
Mm̂t

p̂t = β (I− δC) p̂t+1 − 1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
ĉt+1

m̂t =
εM
εQ
(εQ − 1)T1ât + εM

εQ
T1q̂t +



1− εM

εQ

�
T1M̂t + εM [T1 − T2] p̂t

x̂t = T1X̂t + εXT1p̂invt − εXT2p̂t
1

εLS
SLl̂t = p̂t +

εQ − 1
εQ

ât +
(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1
εQ

αk̂t +
α− I− αεQ

εQ
l̂t

p̂invt = β(1− δK)p̂invt+1 + (1− β(1− δK))
�
p̂t+1 +

1

εQ
q̂t+1 +

εQ − 1
εQ

ât+1

+



−I+ αεQ − 1

εQ

�
k̂t+1 + (I− α) εQ − 1

εQ

�
l̂t+1 + b̂t+1

	

q̂t = ât + (I− α) (I− SM) b̂t + α (I− SM) k̂t + (I− α) (I− SM) l̂t + SMM̂t

In these equations T1 refers to the N2 ×N matrix equal to 1⊗ I, where 1 is an N × 1
vector of 1s and ⊗ is the Kronecker product. Similarly, T2 equals I ⊗ 1. Also, SM is a
diagonal matrix with the steady-state intermediate cost shares along the diagonal; δC is a
matrix with δCJ s along the diagonal; and α is a diagonal matrix with the αJs along the
diagonal. Finally, M̂t and X̂t are the N × 1 vectors which contain the intermediate input
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bundles and investment input bundles employed by each industry, whereas m̂t and x̂t refer
to the N2 × 1 vectors which contain the flows of intermediate and investment inputs across
pairs of industries.

F.3 System reduction

Step 1: Substitute out x̂t and m̂t:

m̂t =
εM
εQ
(εQ − 1)T1ât + εM

εQ
T1q̂t +



1− εM

εQ

�
T1M̂t + εM [T1 − T2] p̂t

x̂t = T1X̂t + εXT1p̂invt − εXT2p̂t
to get:

k̂t+1 = δKX̂t + (1− δK) k̂t

I− εM

εQ
S̃QMT1

�
q̂t = δ

−1
C S̃

Q
C ĉt+1 +

�
I− δ−1C

�
S̃QC ĉt + S̃

Q
XT1X̂t +

εM
εQ
(εQ − 1) S̃QMT1ât

+



1− εM

εQ

�
S̃QMT1M̂t + εX S̃

Q
XT1p̂

inv
t +

(
εM S̃

Q
M [T1 − T2]− εX S̃QXT2

)
p̂t

p̂t = β (I− δC) p̂t+1 − 1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
ĉt+1

1

εLS
SLl̂t = p̂t +

εQ − 1
εQ

ât +
(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1
εQ

αk̂t +
α− I− αεQ

εQ
l̂t

p̂invt = β(1− δK)p̂invt+1 + (1− β(1− δK))
�
p̂t+1 +

1

εQ
q̂t+1 +

εQ − 1
εQ

ât+1

+



−I+ αεQ − 1

εQ

�
k̂t+1 + (I− α) εQ − 1

εQ

�
l̂t+1 + b̂t+1

	

q̂t = ât + (I− α) (I− SM) b̂t + α (I− SM) k̂t + (I− α) (I− SM) l̂t + SMM̂t

Step 2: Use SX1 p̂t = p̂
inv
t (SX1 is the matrix that gives the share of different industries’ outputs

in the investment input bundle) and X̂t = δ−1K k̂t+1+
�
1− δ−1K

�
k̂t; and define β̃ ≡ 1−β (1− δK)
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to get:

I− εM

εQ
S̃QMT1

�
q̂t = δ

−1
C S̃

Q
C ĉt+1 +

�
I− δ−1C

�
S̃QC ĉt +

εM
εQ
(εQ − 1) S̃QMT1ât +



1− εM

εQ

�
S̃QMT1M̂t

+
(
εX S̃

Q
XT1S

X
1 + εM S̃

Q
M [T1 − T2]− εX S̃QXT2

)
p̂t + S̃

Q
XT1δ

−1
K k̂t+1 + S̃

Q
XT1

�
1− δ−1K

�
k̂t

p̂t = β (I− δC) p̂t+1 − 1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
ĉt+1

1

εLS
SLl̂t = p̂t +

εQ − 1
εQ

ât +
(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1
εQ

αk̂t +
α− I− αεQ

εQ
l̂t

SX1 p̂t =
(
β̃I+ β(1− δK)SX1

)
p̂t+1 + β̃

�
1

εQ
q̂t+1 +

εQ − 1
εQ

ât+1

+



−I+ αεQ − 1

εQ

�
k̂t+1 + (I− α) εQ − 1

εQ

�
l̂t+1 + b̂t+1

	

q̂t = ât + (I− α) (I− SM) b̂t + α (I− SM) k̂t + (I− α) (I− SM) l̂t + SMM̂t

Step 3: Use

M̂t = (εQ − 1) ât + q̂t + εQ
�
I− SM1

�
p̂t

where SM1 p̂t = p̂
in
t

�
I− S̃QMT1

	
q̂t = δ

−1
C S̃

Q
C ĉt+1 +

�
I− δ−1C

�
S̃QC ĉt + (εQ − 1) S̃QMT1ât

+ S̃QXT1δ
−1
K k̂t+1 + S̃

Q
XT1

�
1− δ−1K

�
k̂t

+
(
εQS̃

Q
MT1

�
I− SM1

�
+ εM S̃

Q
M

�
T1S

M
1 − T2

�
+ εX S̃

Q
X

�
T1S

X
1 − T2

�)
p̂t

p̂t = β (I− δC) p̂t+1 − 1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
ĉt+1

1

εLS
SLl̂t = p̂t +

εQ − 1
εQ

ât +
(εQ − 1) (I− α)

εQ
b̂t +

1

εQ
q̂t +

εQ − 1
εQ

αk̂t +
α− I− αεQ

εQ
l̂t

(48)

SX1 p̂t =
(
β̃I+ β(1− δK)SX1

)
p̂t+1 + β̃

1

εQ
q̂t+1

+ β̃
εQ − 1
εQ

ât+1 + β̃



−I+ αεQ − 1

εQ

�
k̂t+1 + β̃ (I− α) εQ − 1

εQ

�
l̂t+1 + b̂t+1

	
q̂t = (I− SM)−1 (I+ SM (εQ − 1)) ât + (I− α) b̂t + αk̂t (49)

+ (I− α) l̂t + (I− SM)−1 SMεQ
�
I− SM1

�
p̂t

Step 4: Use the production function, given in Equation 49, to substitute q̂t out of the first,
third, and fourth equations:
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1

εQ
q̂t =

1

εQ
(I− SM)−1 (I+ SM (εQ − 1)) ât + 1

εQ
(I− α) b̂t + 1

εQ
αk̂t (50)

+
1

εQ
(I− α) l̂t + (I− SM)−1 SM

�
I− SM1

�
p̂t�

I− S̃QMT1
	
q̂t =

�
I− S̃QMT1

	
(I− SM)−1 (I+ SM (εQ − 1)) ât +

�
I− S̃QMT1

	
(I− α) b̂t

+
�
I− S̃QMT1

	
αk̂t +

�
I− S̃QMT1

	
(I− α) l̂t

+
�
I− S̃QMT1

	
(I− SM)−1 SM

�
I− SM1

�
εQp̂t

to get

0 = δ−1C S̃
Q
C ĉt+1 +

�
I− δ−1C

�
S̃QC ĉt

+
(
(εQ − 1) S̃QMT1 −

�
I− S̃QMT1

	
(I− SM)−1 (I+ SM (εQ − 1))

)
ât

+ S̃QXT1δ
−1
K k̂t+1 +

(
S̃QXT1

�
1− δ−1K

�− �I− S̃QMT1	α) k̂t
−
�
I− S̃QMT1

	
(I− α) b̂t −

�
I− S̃QMT1

	
(I− α) l̂t

+
(
εX S̃

Q
X

�
T1S

X
1 − T2

�− �I− S̃QMT1	 εQ (I− SM)−1 SM �I− SM1 �) p̂t
+
(
εQS̃

Q
MT1

�
I− SM1

�
+ εM S̃

Q
M

�
T1S

M
1 − T2

�)
p̂t

p̂t = β (I− δC) p̂t+1 − 1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
ĉt+1

SX1 p̂t =
(
β̃I+ β(1− δK)SX1 + β̃ (I − SM)−1 SM

�
I− SM1

�)
p̂t+1

+ β̃

�
1

εQ
(I− SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât+1

+ β̃ (I− α) b̂t+1 + β̃ (−I+ α) k̂t+1 + β̃ (I− α) l̂t+1
Step 5: Use the following equation:

(I− α) l̂t = ϑ (I− α) b̂t + ϑαk̂t + ϑ
�
εQ − 1
εQ

I+
1

εQ
(I− SM)−1 (I+ SM (εQ − 1))



ât (51)

+ ϑ
�
(I− SM)−1 SM

�
I− SM1

�
+ I
�
p̂t

where ϑ = (I− α)
�
1

εLS
SL + α


−1
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(this equation comes from plugging Equation 49 into Equation 48 and re-arranging) to get

0 = δ−1C S̃
Q
C ĉt+1 +

�
I− δ−1C

�
S̃QC ĉt (52)

+
(
(εQ − 1) S̃QMT1 −

�
I− S̃QMT1

	 �
I+ ϑε−1Q

�
(I− SM)−1 (I+ SM (εQ − 1))

)
ât

−
�
I− S̃QMT1

	
ϑ
εQ − 1
εQ

ât + S̃
Q
XT1δ

−1
K k̂t+1

+
(
S̃QXT1

�
1− δ−1K

�− �I− S̃QMT1	 (I+ ϑ)α) k̂t − �I− S̃QMT1	 (I+ ϑ) (I− α) b̂t
+
(
εQS̃

Q
MT1

�
I− SM1

�
+ εM S̃

Q
M

�
T1S

M
1 − T2

�
+ εX S̃

Q
X

�
T1S

X
1 − T2

�)
p̂t

+
(
−
�
I− S̃QMT1

	 �
εQ (I− SM)−1 SM

�
I− SM1

�
+ ϑ
�
(I− SM)−1 SM

�
I− SM1

�
+ I
��)
p̂t

p̂t = β (I− δC) p̂t+1 − 1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
ĉt+1

SX1 p̂t =
(
β(1− δK)SX1 + β̃ (I+ ϑ)

�
I+ (I− SM)−1 SM

�
I− SM1

��)
p̂t+1

+ β̃ (I+ ϑ)

�
1

εQ
(I− SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât+1 + β̃ (I+ ϑ) (I− α) b̂t+1

+ β̃ (−I+ α+ ϑα) k̂t+1

So now we are down to three equations and three sets of endogenous unknowns (p̂t, k̂t, and
ĉt). How we proceed will depend on whether we allow for consumption to be durable or not.
Case 1: No Durables
Plug

ĉt = −εD
�
I+ SCI (εD − 1)

�−1
p̂t

in to the other two equations, above, to substitute out the ĉt vector.

0 =

�
(εQ − 1) S̃QMT1 −

�
I− S̃QMT1

	 �
I+ ϑε−1Q

�
(I− SM)−1 (I+ SM (εQ − 1))−

�
I− S̃QMT1

	
ϑ
εQ − 1
εQ



ât

+ S̃QXT1δ
−1
K k̂t+1 +

(
S̃QXT1

�
1− δ−1K

�− �I− S̃QMT1	 (I+ ϑ)α) k̂t − �I− S̃QMT1	 (I+ ϑ) (I− α) b̂t
+
(
−εDS̃QC

�
I+ SCI (εD − 1)

�−1
+ εQS̃

Q
MT1

�
I− SM1

�
+ εM S̃

Q
M

�
T1S

M
1 − T2

�
+ εX S̃

Q
X

�
T1S

X
1 − T2

�)
p̂t

−
�
I− S̃QMT1

	 �
εQ (I− SM)−1 SM

�
I− SM1

�
+ ϑ
�
(I− SM)−1 SM

�
I− SM1

�
+ I
��
p̂t

0 = −SX1 p̂t +
(
β(1− δK)SX1 + β̃ (I+ ϑ)

�
I+ (I − SM)−1 SM

�
I− SM1

��)
p̂t+1

+ β̃ (I+ ϑ)

�
1

εQ
(I − SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât+1

+ β̃ (I+ ϑ) (I− α) b̂t+1 + β̃ (−I+ α+ ϑα) k̂t+1
Case 2: Durables
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Combine the final two equations in the line before "So now..."

− SX1
1

εD
(I− β (I− δC))

× �I+ SCI (εD − 1)� ĉt+1 = (β̃ (I+ ϑ) �I+ (I− SM)−1 SM �I− SM1 ��+ SX1 β (δC − δKI)) p̂t+1
+ β̃ (I+ ϑ)

�
1

εQ
(I− SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât+1

+ β̃ (I+ ϑ) (I− α) b̂t+1 + β̃ (−I+ α+ ϑα) k̂t+1
to get.

ĉt = ϑ̃
(
β̃ (I+ ϑ)

�
I+ (I− SM)−1 SM

�
I− SM1

��
+ SX1 β (δC − IδK)

)
p̂t

+ ϑ̃β̃ (I+ ϑ)

�
1

εQ
(I− SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât

+ ϑ̃β̃ (I+ ϑ) (I− α) b̂t + β̃ϑ̃ (−I+ α+ ϑα) k̂t
where

ϑ̃ ≡
�
−SX1

1

εD
(I− β (I− δC))

�
I+ SCI (εD − 1)

�
−1
Plug this in:
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0 = S̃QC ϑ̃β̃ (I+ ϑ)

�
1

εQ
(I− SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât (53)

+

�
(εQ − 1) S̃QMT1 −

�
I− S̃QMT1

	 �
I+ ϑε−1Q

�
(I− SM)−1 (I+ SM (εQ − 1))−

�
I− S̃QMT1

	
ϑ
εQ − 1
εQ



ât

+ δ−1C S̃
Q
C ϑ̃
(
β̃ (I+ ϑ)

�
I+ (I− SM)−1 SM

�
I− SM1

��
+ SX1 β (δC − IδK)

)
p̂t+1

+
�
I− δ−1C

�
S̃QC ϑ̃

(
β̃ (I+ ϑ)

�
I+ (I− SM)−1 SM

�
I− SM1

��
+ SX1 β (δC − IδK)

)
p̂t

+
(
εQS̃

Q
MT1

�
I− SM1

�
+ εM S̃

Q
M

�
T1S

M
1 − T2

�
+ εX S̃

Q
X

�
T1S

X
1 − T2

�)
p̂t

+
(
−
�
I− S̃QMT1

	 �
(I− SM)−1 SM

�
I− SM1

�
εQ + ϑ

�
(I− SM)−1 SM

�
I − SM1

�
+ I
��)
p̂t

+
(
S̃QXT1δ

−1
K + δ−1C S̃

Q
C β̃ϑ̃ (−I+ α+ ϑα)

)
k̂t+1

+
(
S̃QXT1

�
1− δ−1K

�− �I− S̃QMT1	 (I+ ϑ)α + �I− δ−1C � S̃QC β̃ϑ̃ (−I+ α+ ϑα)) k̂t
+
(
S̃QC ϑ̃β̃ (I+ ϑ) (I− α)−

�
I− S̃QMT1

	
(I+ ϑ) (I− α)

)
b̂t

0 = −SX1 p̂t +
(
β(1− δK)SX1 + β̃ (I+ ϑ)

�
I+ (I− SM)−1 SM

�
I− SM1

��)
p̂t+1 (54)

+ β̃ (I+ ϑ)

�
1

εQ
(I − SM)−1 (I+ SM (εQ − 1)) + IεQ − 1

εQ



ât+1 + β̃ (I+ ϑ) (I− α) b̂t+1

+ β̃ (−I+ α+ ϑα) k̂t+1

F.4 Blanchard-Kahn

In Equations 53 and 54, we have expressed the reduced system as�
Et[p̂t+1]
k̂t+1



= Ψ

�
p̂t
k̂t



+Φ

�
ât
b̂t




Here, Ψ has N stable and N unstable eigenvalues.
Using a Jordan decomposition, write Ψ = VDV−1 where D is diagonal and is ordered

such that the N explosive eigenvalues are ordered first and the N stable eigenvalues are
ordered last. Re-write:

Υt+1 ≡ V−1
�
Et[p̂t+1]
k̂t+1



= DV−1

�
p̂t
k̂t



+V−1Φ

�
ât
b̂t



≡ DΥt + Φ̃

�
ât
b̂t




Partition Υt into the first N × 1 block, Υ1t, and the lower N × 1 block, Υ2t. Similarly
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partition Φ̃ and D.

Υ1,t = D
−1
1 Et[Υ1,t+1]−D−1

1 Φ̃

�
ât
b̂t



Substitute recursively

Υ1,t = −D−1
1

∞'
s=0

D−s
1 Φ̃1

�
ât
b̂t



= −D−1

1 (I −D−1
1 )

−1Φ̃1

�
ât
b̂t



(55)

For Y2,t:

Υ2,t = D2Υ2,t−1 + Φ̃2 ·
�
ât
b̂t



Remember that �

Υ1,t

Υ2,t



= V−1

�
p̂t
k̂t



,

and therefore, from Equation 55

p̂t = −(V−1
11 )

−1V−1
12 k̂t + (V

−1
11 )

−1Υ1t (56)

= −(V−1
11 )

−1V−1
12 k̂t − (V−1

11 )
−1D−1

1 (I−D−1
1 )

−1Φ̃1

�
ât
b̂t



The endogenous state evolves as follows:

k̂t+1 = Ψ22k̂t +Ψ21p̂t +Φ2

�
ât
b̂t



= (Ψ22 −Ψ21(V

−1
11 )

−1V−1
12 ). -, /

≡Mkk

k̂t +
�
−Ψ21(V

−1
11 )

−1D−1
1 (I−D−1

1 )
−1Φ̃1 +Φ2

	
. -, /

≡[Mka, Mkb]

�
ât
b̂t



(57)

For future reference:

p̂t = Ψ
−1
21 k̂t+1 −Ψ−1

21Ψ22k̂t −Ψ−1
21Φ2

�
ât
b̂t



(58)

F.5 Obtaining the model filter

Combine Equations 50 and 51 to write q̂t as a function of the exogenous variables, k̂,
and p̂

q̂t = (I+ ϑ) (I− α) b̂t + (I+ ϑ)αk̂t (59)

+

�
εQ − 1
εQ

ϑ+



ϑ

εQ
+ I

�
(I− SM)−1 (I+ SM (εQ − 1))



ât

+
�
(ϑ+ εQI) (I− SM)−1 SM

�
I− SM1

�
+ ϑ
�
p̂t
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Plug Equation 57 and 58 in so that we may write:

q̂t = Φkqk̂t + Φbq b̂t + Φaqât, (60)

where the Φkq, Φbq, and Φaq are matrices that collect the appropriate terms.40

So long as Φkq is invertible, Equation 60 is equivalent to

k̂t = Φ−1kq q̂t − Φ−1kq Φbq b̂t − Φ−1kq Φaqât

Equation 60, one period ahead, is

q̂t+1 = Φkqk̂t+1 + Φbq b̂t+1 + Φaqât+1

Apply Equation 57 to this previous equation

q̂t+1 = Φbq b̂t+1 + Φaqât+1

+Φkq

�
Mkkk̂t +Mkaât +Mkbb̂t

	
= Φbq b̂t+1 + Φaqât+1

+ΦkqMkaât + ΦkqMkbb̂t

+ΦkqMkkΦ
−1
kq q̂t − ΦkqMkkΦ

−1
kq Φbq b̂t − ΦkqMkkΦ

−1
kq Φaqât

= Φbq b̂t+1 + Φaqât+1 + ΦkqMkkΦ
−1
kq q̂t

+
�
ΦkqMka − ΦkqMkkΦ

−1
kq Φaq

�
ât +

�
ΦkqMkb − ΦkqMkkΦ

−1
kq Φbq

�
b̂t

Finally, take two adjacent periods, and use the definitions of ωAt+1 (≡ ât+1 − ât) and
40Combine Equations 57 and 58:

p̂t = Ψ−1
21 k̂t+1 −Ψ−1

21 Ψ22k̂t −Ψ−1
21 Φ2

�
ât
b̂t



= Ψ−1

21

�
Ψ22 −Ψ21(V
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11 )

−1V−1
12

�
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21 Ψ22k̂t

−Ψ−1
21 Φ2

�
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+Ψ−1
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(�
−Ψ21(V
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11 )

−1D−1
1 (I−D−1

1 )−1Φ̃1 +Φ2
	) �ât
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= −(V−1

11 )
−1V−1

12 k̂t − (V−1
11 )

−1D−1
1 (I−D−1

1 )−1Φ̃1

�
ât
b̂t



So:

q̂t =
*
(I+ ϑ)α−

(
(ϑ+ εQI) (I− SM )−1 SM

�
I− SM1

�
+ ϑ
)
(V−1

11 )
−1V−1
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+
k̂t

+

�
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εQ

ϑ+



ϑ

εQ
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�
(I− SM )−1 (I+ SM (εQ − 1))
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−
(
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�
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ωBt+1

�
≡ b̂t+1 − b̂t

	
so that

Δq̂t+1 = ΦkqMkkΦ
−1
kqΔq̂t + Φbqω

B
t+1 + Φaqω

A
t+1 +

+
�
ΦkqMka − ΦkqMkkΦ

−1
kq Φaq

�
ωAt +

�
ΦkqMkb − ΦkqMkkΦ

−1
kq Φbq

�
ωBt

Parsing out the factor-neutral productivity shocks yields Equation 10 of the paper. This
equation also describes how one can recover labor-augmenting productivity shocks using data
on industries’ output growth rates.

In the remainder of this subsection, we work out the expression for industries’ value
added growth rates. Begin with the first-order condition for industries’ intermediate input
purchases

MtJP
in
tJ = μJA

εQ−1
tJ



P intJ
PtJ

�1−εQ
PtJQtJ

V AtJ = PtJQtJ −MtJP
in
tJ

= PtJQtJ

�
1− μAεQ−1

tJ



P intJ
PtJ

�1−εQ�
V AtJ
PtJ

= QtJ ·
�
1− μAεQ−1

tJ



P intJ
PtJ

�1−εQ�

So, the log-linearized expression for real value added is

v̂t = q̂t − SM · (εQ − 1) · ât − SM · (εQ − 1) ·
�
I− SM1

�
p̂t

Substituting out the expression for q̂t:

v̂t = Φkqk̂t + Φbq b̂t +
�
Φaq − SM · (εQ − 1)

�
ât

−SM · (εQ − 1) ·
�
I− SM1

�
p̂t

And then substituting out the expression for p̂t:

Δv̂t =
�
Φkq + S

M · (εQ − 1) ·
�
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� · (V−1
11 )

−1V−1
12

�
Δk̂t

+Φbqω
B
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�
Φaq − SM · (εQ − 1)

�
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+SM · (εQ − 1) ·
�
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� · (V−1
11 )
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Equation 57 allows one to recursively compute the variance-covariance matrix of Δk̂t.

From here, in combination with the last equation, one can write the covariance matrix of
value added as a function of the covariance matrix of sectoral productivity shocks.
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F.6 Calculations related to Section 2.4

In this section, I solve for covariance of industries’ output as functions of the model
parameters and the exogenous TFP terms. The solution involves three steps. First, I solve
for the wage. Second, I solve for the relative prices and intermediate input cost shares. Third,
I solve for real sales. As there is no capital or durable goods, the decisions within each period
are independent of those made in other periods. As such, I will omit time subscripts in this
section.

Step 1: For later use, I will first solve for the wage in each period. For this portion of
the analysis, it will be sufficient to examine how much the consumer wants to work and how
much she wants to consume. Since the consumer’s problems are separable across periods,
the objective function for the consumer is

U = logC − εLS
εLS + 1

L
εLS+1

εLS subject to

P · C = W · L .

The solution to this constrained optimization problem is:

W = L
1

εLS and C =
1

P
. (61)

Invoking the budget constraint of the representative consumer:

L
εLS+1

εLS = 1,

implying W = 1.
Step 2: Now consider the cost-minimization problem of the representative firm in indus-

try J . As I argued in the text, the cost-minimization problem implies the following recursive
equation for the marginal cost (equivalently, price) of industry J ’s good:

PJ =
1

AJ

⎡⎢⎣1− μ+ μ� N'
I=1

1

N
(PI)

1−εM
� 1−εQ
1−εM

⎤⎥⎦
1

1−εQ

for J = {1, ...N}. (62)

The log-linear approximation to the previous equation is:

logPJ ≈ − logAJ + μ

N

N'
I=1

logPI . (63)

for all pairs of industries, so that Equation 63 implies:

logPJ ≈ − logAJ + μ

N

N'
I=1

[logPJ + logAJ − logAI ] .
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Re-arranging:

logPJ ≈ − logAJ − μ

N (1− μ)
N'
I=1

logAI .

Because all industries’ cost shares are identical (both in the consumer’s preferences and
in the production of each industry’s intermediate input bundle):

logP inJ ≈ logP ≈ − 1

N (1− μ)
N'
J=1

logAJ .

Step 3: The last task is to solve for QJ . To do so, apply the market clearing condition
for good I, plug in the intermediate input demand by customers of I, then re-arrange:

QI = CI +

N'
J=1

MI→J .

QI = CI +
μ

N
(PI)

−εM
N'
J=1

QJ (PJ)
εQ−1 �P inJ �εM−εQ

Next, take the log-linear approximation around the point at which all of the A’s equal 1:

logQI ≈ log



1

1− μ
�
+ (1− μ) logCI − μεM logPI + μ

N

'
J

logQJ

+
μ

N

N'
J=1

(εQ − 1) logPJ + (εM − εQ) logP inJ .

logQI − μ

N

'
J

logQJ ≈ log



1

1− μ
�
+ (1− μ) logCI − μεM logPI + μ

N

N'
J=1

(εM − 1) logPJ

≈ log



1

1− μ
�
+ (1− μ) logCI (64)

+μεM logAI +
μ [εM (μ− 1) + 1]

N (1− μ)
N'
I=1

logAJ

Given the preferences of the representative consumer, the demand function for good I
is:

logCI = log
1

N
− εD log



PI
P

�
− logP .

≈ log
1

N
+ εD

1

N

N'
J=1

log



AI
AJ

�
+

1

N (1− μ)
N'
J=1

logAJ

≈ log
1

N
+ εD logAI +

1− (1− μ) εD
N (1− μ)

N'
J=1

logAJ
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Plug this expression back into Equation 64 and combine terms:

logQI − μ

N

'
J

logQJ ≈ (1− μ) log 1
N
+ log



1

1− μ
�
+ (μεM + (1− μ) εD) logAI

+

�
(1− μ) (1− (1− μ) εD) + μ [εM (μ− 1) + 1]

N


 N'
J=1

logAJ
1− μ

≈ (1− μ) log 1
N
+ log



1

1− μ
�
+ (μεM + (1− μ) εD) logAI

+
1− (1− μ) (μεM + (1− μ) εD)

N

N'
J=1

logAJ
1− μ (65)

Equation 65 is a system of N linear equations. The solution to these equations are

logQI ≈ log
1

N
+

1

1− μ log



1

1− μ
�
+ (μεM + (1− μ) εD) logAI

+
1

N

�

1

1− μ
�2
− (μεM + (1− μ) εD)

�
N'
J=1

logAJ (66)

Equation 66 is equivalent to the expression given in the body of the paper.

F.7 Calculations related to Section 3

In this appendix, I demonstrate that the instrumental variable strategy outlined in Ace-
moglu, Akcigit, and Kerr (2016) extends to a set-up in which sectoral production functions
are CES rather than Cobb-Douglas. To do so, I will extend the benchmark model to explic-
itly accommodate demand shocks. As in Acemoglu, Akcigit, and Kerr (2016), the model will
be static, with neither capital nor durable consumption goods. Also as in Acemoglu, Akcigit,
and Kerr (2016), I impose that the logarithm of productivity equals zero: logAI = logBI = 0
for all industries, I.

The goal of this exercise is to examine how a demand shock in one industry–in particular
the Government industry, which would be directly affected by an exogenous increase in
military spending–impacts output in other industries. In particular, I wish to show that a
linear relationship exists irrespective of the values of εM and εQ.

Begin with the Lagrangian of the social planner’s problem, dropping t subscripts:

L =
'
I�
(DI�ξI�)

1
εD · log

⎡⎣� N'
J=1

(DJξJ)
1
εD (CtJ)

εD−1
εD

� εD
εD−1

⎤⎦
− εLS
εLS + 1

�
N'
J=1

LJ

� εLS+1

εLS

+ PJ

�
QJ − CJ −

N'
I=1

MJ→I

�
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The production function is, as before:

QJ = AJ ·
�
(1− μJ)

1
εQ (LJ ·BtJ)

εQ−1
εQ + (μJ)

1
εQ (MJ)

εQ−1
εQ


 εQ
εQ−1

, where

MJ ≡
�'

I

�
ΓMIJ
� 1
εM (MIJ)

εM−1
εM

� εM
εM−1

The first-order conditions associated with the planner’s problem are:

PJ = (DJξJ)
1
εD (CJ)

− 1
εD

�
N'
I=1

(ξIDI)
1
εD&

I� (DI�ξI�)
1
εD

(CI)
εD−1
εD

�−1
(67)

PI
PJ

= (AJ)
εQ−1
εQ



QJ · μJ
MJ

� 1
εQ



MJ · ΓMIJ
MI→J

� 1
εM

.�
N'
J �=1

LJ �

� 1
εLS

= PJ (AJ)
εQ−1
εQ BJ (QJ (1− μJ))

1
εQ (LJ ·BJ)−

1
εQ .

(1− μJ)
1
εQ (LJ ·BJ)

εQ−1
εQ = (PJ)

εQ−1 (AJ)
(εQ−1)2

εQ (BJ)
εQ−1 (QJ)

εQ−1
εQ (1− μJ)

�
N'
J �=1

LJ �

� 1−εQ
εLS

μ
1
εQ

J (MJ)
εQ−1
εQ = (PJ)

εQ−1 (AJ)
(εQ−1)2

εQ (QJ)
εQ−1
εQ μJ

�
P inJ
�1−εQ

Combining the appropriate first-order conditions, and setting labor as the numeraire

good (so that
�&N

J �=1 LJ �
	 1
εLS = 1) yields the following expression for industries’ prices:

P
1−εQ
J = A

εQ−1
J ·

⎡⎢⎣(1− μJ)BεQ−1
J + μJ

�'
I

ΓMIJP
1−εM
I

� 1−εQ
1−εM

⎤⎥⎦
Importantly, sectoral prices do not depend on the demand shocks. Also, with logAI =

logBI = 0, all sectoral prices equal 1.
As a second step, manipulating Equation 67 and invoking the fact that sectoral prices

are all equal 1, yields
CI = DIξI

Plugging this expression into the market clearing condition

QI = DIξI +
'
J

MI→J
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Since prices are constant, d logQI =
d(QIPI)
QIPI

= dQI
QI

and

QIPI = DIξIPI +
'
J

MI→JPI

= DIξIPI +
'
J

PJΓIJQJμJ

So

d (QIPI)

QIPI
= ξI

dDI

QI
+
'
J

ΓIJμJ
d (QJPJ)

QIPI

= ξI
dDI

QI
+
'
J

ΓIJμJQJPJ
QIPI

d (QJPJ)

QJPJ

In matrix form, industries’ output levels are given by:

d logQ =
�
I− Γ̃

	−1
dD, (68)

where the elements of Γ̃ are given by ΓIJμJQJPJ
QIPI

. Equation 68 is equivalent to Equation A8
from Acemoglu, Akcigit, and Kerr (2016).41 Briefly, the reason why the result from Ace-
moglu, Akcigit, and Kerr (2016) extends to the current environment is that i) the impact of a
demand shock on industries’ sales depends on the production elasticities of substitution only
if industries’ prices react to demand shocks, but ii) demand shocks do not alter industries’
prices.

F.8 Solution of the model filter with government demand shocks

In this subsection I work through a version of the model filter in which the government
industry is not subject to productivity shocks. Instead, there are demand shocks in the
government industry. For this robustness check, I assume that all goods are nondurable. I
begin with the first-order condition from Equation 67

PtJ = (DtJξtJ)
1
εD (CtJ)

− 1
εD

�
N'
I=1

(DtIξI)
1
εD&

I� (DtI�ξI�)
1
εD

(CtI)
εD−1
εD

�−1
Notice that demand shocks do not appear in any of the other first-order conditions. Nor
do they enter in the market-clearing conditions. To compute the log-linear approximation

41A parameter, λ, from Acemoglu, Akcigit, and Kerr (2016) describes the labor supply response from a
change in government spending. The equation, here, is consistent with λ→∞.
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(around the point at which all productivity and demand shocks equals 1), begin with

PtJ
PJ

· PJ = (DtJξJ)
1
εD (CJ)

− 1
εD (exp {ĉtJ})−

1
εD ×�

N'
I=1

(DtIξI)
1
εD&

I� (DtI�ξI�)
1
εD



CtI
CI

� εD−1
εD

(CI)
εD−1
εD

�−1

and substitute in the steady-state relationship between consumption and prices

exp {p̂tJ} = exp
*
d̂tJ

+ 1
εD exp {ĉtJ}−

1
εD ×⎛⎜⎝ N'

I=1

exp
*
d̂tI

+ 1
εD

&
I� exp

*
d̂tI�
+ 1

εD (ξI�)
1
εD

(ξI)
1
εD (CI)

εD−1
εD&N

I�=1 (ξ
�
I)

1
εD (CI�)

εD−1
εD

exp {ĉtI}
εD−1
εD

⎞⎟⎠
−1

Taking derivatives of the logarithm of each side of the previous equation, around the point
at which p̂tJ = 0, d̂tJ = 0, and ĉtJ = 0 yields:

p̂tJ =
1

εD
d̂tJ − 1

εD
ĉtJ +

'
I

(ξI)
1
εD (CI)

εD−1
εD&N

I�=1 (ξ
�
I)

1
εD (CI�)

εD−1
εD

[1− εD]
(
ĉtI − d̂tI

)
In vector form, the log-linearized equation for consumption as a function of prices and
demand shocks is:

p̂t =
�
I+ SCI (εD − 1)

� �− 1

εD
ĉt +

1

εD
d̂t



⇒

ĉt = d̂t − εD
�
I+ SCI (εD − 1)

�−1
p̂t

Plug this log-linearized equation into Equation 52 to substitute out the ĉt vector.

0 =

�
(εQ − 1) S̃QMT1 −

�
I− S̃QMT1

	 �
I+ ϑε−1Q

�
(I− SM)−1 (I+ SM (εQ − 1))−

�
I− S̃QMT1

	
ϑ
εQ − 1
εQ



ât

+ S̃QXT1δ
−1
K k̂t+1 +

(
S̃QXT1

�
1− δ−1K

�− �I− S̃QMT1	 (I+ ϑ)α) k̂t − �I− S̃QMT1	 (I+ ϑ) (I− α) b̂t + S̃QC d̂t
+
(
−εDS̃QC

�
I+ SCI (εD − 1)

�−1
+ εQS̃

Q
MT1

�
I− SM1

�
+ εM S̃

Q
M

�
T1S

M
1 − T2

�
+ εX S̃

Q
X

�
T1S

X
1 − T2

�)
p̂t

−
�
I− S̃QMT1

	 �
εQ (I− SM)−1 SM

�
I− SM1

�
+ ϑ
�
(I− SM)−1 SM

�
I− SM1

�
+ I
��
p̂t

0 = −SX1 p̂t +
(
β(1− δK)SX1 + β̃ (I+ ϑ)

�
I+ (I − SM)−1 SM

�
I− SM1

��)
p̂t+1

+ β̃ (I+ ϑ)

�
1

εQ
(I − SM)−1 (I+ SM (εQ − 1)) + εQ − 1

εQ
I



ât+1

+ β̃ (I+ ϑ) (I− α) b̂t+1 + β̃ (−I+ α+ ϑα) k̂t+1
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Again, now with demand shocks, we have expressed the reduced system as

�
Et[p̂t+1]
k̂t+1



= Ψ

�
p̂t
k̂t



+

d

Φ

⎡⎣âtb̂t
d̂t

⎤⎦
As in Appendix F.4, Ψ has N stable and N unstable eigenvalues. Here, the "d" in

d

Φ
refers to the modification of Φ to allow for demand shocks. Using a similar set of calculations
as in Appendix F.4, we arrive at the following equation for the evolution of the endogenous
state:

k̂t+1 = (Ψ22 −Ψ21(V
−1
11 )

−1V−1
12 ). -, /

≡Mkk

k̂t (69)

+

�
−Ψ21(V

−1
11 )

−1D−1
1 (I−D−1

1 )
−1

d

Φ̃1 +
d

Φ2

�
. -, /

≡
d
Mka,

d
Mkb,

d
Mkd

⎡⎣âtb̂t
d̂t

⎤⎦

As before

p̂t = Ψ
−1
21 k̂t+1 −Ψ−1

21Ψ22k̂t −Ψ−1
21

d

Φ2

⎡⎣âtb̂t
d̂t

⎤⎦ (70)

As before, the following equation describes q̂ as a function of the exogenous variables,
k̂, and p̂ :

q̂t = (I+ ϑ) (I− α) b̂t + (I+ ϑ)αk̂t (71)

+

�
εQ − 1
εQ

ϑ+



ϑ

εQ
+ I

�
(I− SM)−1 (I+ SM (εQ − 1))



ât

+
�
(ϑ+ εQI) (I− SM)−1 SM

�
I− SM1

�
+ ϑ
�
p̂t

Plug Equation 69 and 70 in to 71 so that we may write:

q̂t = Φkqk̂t + Φbq b̂t + Φaqât + Φdqd̂t, (72)
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where the Φkq, Φbq,Φaq, and Φdq are matrices that collect the appropriate terms.42

So long as Φkq is invertible, Equation 72 is equivalent to

k̂t = Φ−1kq q̂t − Φ−1kq Φbq b̂t − Φ−1kq Φaqât − Φ−1kq Φdqd̂t

Equation 72, one period ahead, is

q̂t+1 = Φkqk̂t+1 + Φbq b̂t+1 + Φaqât+1 + Φdqd̂t+1

Apply Equation 69 to this previous equation

q̂t+1 = Φbq b̂t+1 + Φaqât+1 + Φdqd̂t+1

+Φkq



Mkkk̂t +

d

Mkaât +
d

Mkbb̂t +
d

Mkdd̂t

�
= Φbq b̂t+1 + Φaqât+1 + Φdqd̂t+1

+Φkq
d

Mkaât + Φkq
d

Mkbb̂t + ΦkqMkdd̂t + ΦkqMkkΦ
−1
kq q̂t

−ΦkqMkkΦ
−1
kq Φbq b̂t − ΦkqMkkΦ

−1
kq Φaqât − ΦkqMkkΦ

−1
kq Φdqd̂t

= Φdqd̂t+1 + Φbq b̂t+1 + Φaqât+1 + ΦkqMkkΦ
−1
kq q̂t +

�
Φkq

d

Mka − ΦkqMkkΦ
−1
kq Φaq



ât

+

�
Φkq

d

Mkb − ΦkqMkkΦ
−1
kq Φbq



b̂t +

�
Φkq

d

Mkd − ΦkqMkkΦ
−1
kq Φdq



d̂t

42Combine Equations 69 and 70:

p̂t = Ψ−1
21 k̂t+1 −Ψ−1

21 Ψ22k̂t −Ψ−1
21

d

Φ2

⎡⎣âtb̂t
d̂t

⎤⎦
= Ψ−1

21

�
Ψ22 −Ψ21(V

−1
11 )

−1V−1
12

�
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21 Ψ22k̂t

−Ψ−1
21

d

Φ2

⎡⎣âtb̂t
d̂t

⎤⎦+Ψ−1
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−1D−1
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d
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d
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��⎡⎣âtb̂t
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11 )
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⎤⎦
So:

q̂t =
*
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(ϑ+ εQI) (I− SM )−1 SM

�
I− SM1

�
+ ϑ
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�
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ϑ

εQ
+ I

�
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⎤⎦
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Finally, take two adjacent periods, and use the definitions of ωAt+1 (≡ ât+1 − ât), ωBt+1
�
≡ b̂t+1 − b̂t

	
,

and ωDt+1
�
≡ d̂t+1 − d̂t

	
so that

Δq̂t+1 = ΦkqMkkΦ
−1
kqΔq̂t + Φdqω

D
t+1 + Φbqω

B
t+1 + Φaqω

A
t+1 +

+

�
Φkq

d

Mka − ΦkqMkkΦ
−1
kq Φaq



ωAt +

�
Φkq

d

Mkb − ΦkqMkkΦ
−1
kq Φbq



ωBt

+

�
Φkq

d

Mkd − ΦkqMkkΦ
−1
kq Φdq



ωDt

In the robustness check with productivity shocks in all non-government industries in
combination with demand shocks in the government sector, the filter is given by inverting
the following equation:

Δq̂t+1 = ΦkqMkkΦ
−1
kqΔq̂t (73)

+

�
[Φaq][1:N,1:N−1]

... Φdq[1:N,N ]



·
� �
ωAt+1

�
[1:N−1]�

ωDt+1
�
N



+

��
Φkq

d

Mka − ΦkqMkkΦ
−1
kq Φaq



[1:N,1:N−1]

...
�
Φkq

d

Mkd − ΦkqMkkΦ
−1
kq Φdq



[1:N,N ]

�

·
� �
ωAt
�
[1:N−1]�
ωDt
�
N



Since the government sector is the final (N th) industry, the filter recovers an N − 1 dimen-
sional productivity vector along with a single, final element of the demand shock vector.
In Equation 73, a [1 : N − 1] subscript refers to the first N − 1 elements of a vector;
a [1 : N, 1 : N − 1] subscript refers to the first N − 1 columns of a given matrix; and a
[1 : N,N ] subscript refers to the final column. Here, we have removed labor-augmenting
productivity shocks and factor-neutral productivity shocks in the N th (governmental) sector
as a source of output fluctuations.
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