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h i g h l i g h t s

• We apply a multi-industry business cycle model to explore the sources of GDP fluctuations.
• We structurally recover the productivity shocks experienced in each industry-quarter.
• We estimate the common and industry-specific components of the recovered shocks.
• We find that industry-specific shocks explain the predominant share of GDP tail risk.
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a b s t r a c t

Using a multi-industry real business cycle model, we empirically examine the microeconomic origins of
aggregate tail risks. Our model, estimated using industry-level data from 1972 to 2016, indicates that
industry-specific shocks account for most of the third and fourth moments of GDP growth.
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1. Introduction

Aggregate activity exhibits tail risks. That is, the distribution
of aggregate fluctuations has fatter tails than that of a normally
distributed random variable. Understanding these tail risks is im-
portant for multiple macroeconomic topics, including evaluating
the utility cost of macroeconomic fluctuations (Barro, 2009) and
forecasting aggregate activity (Curdia et al., 2014). In this paper,
we empirically investigate whether higher moments have sectoral
origins.

We begin by exploring the skewness and kurtosis of GDP and
industries’ output growth rates. As we document, GDP growth
exhibits positive excess kurtosis of 2.34.1 Moreover, for most of
the industries in our sample, output growth is kurtotic. There are,
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1 To put this in context, the excess kurtosis of the Laplace (double exponential)
distribution equals 3, while that of the normal distribution is zero.

however, substantial differences across industries in the extent to
which their output growth rate distributions deviate from normal-
ity.

We apply the structural approach of Foerster et al. (2011) to
filter the underlying productivity shocks from data on industries’
output growth rates. With these productivity shocks, we evaluate
the contribution of industry-specific shocks to aggregate fluctu-
ations’ departures from normality: We first compute the model-
implied higher moments of GDP with both common and industry-
specific shocks and then with industry-specific shocks only. Our
main finding from this exercise is that the importance of industry-
specific shocks depends on the assumed complementarity of in-
puts in sectoral production functions. For values of complemen-
tarity estimated in Atalay (2017), industry-specific shocks account
for the predominant share of the third and fourth moments of GDP
fluctuations.

First, our work contributes to the literature, initiated by Long
and Plosser (1983), that hypothesizes that localized disturbances
shape aggregate fluctuations. Within this literature, our paper is
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closest to Foerster et al. (2011) and Atalay (2017). Like these
papers, we apply a general equilibrium multi-industry model to
recover the productivity shocks experienced by each industry, and
then extract the common component of our recoveredproductivity
shocks. We contribute to this literature by assessing the role of
industry-specific shocks in generating deviations from normality
in GDP growth.

Second, our paper contributes to the literature on the micro
sources of macroeconomic tail risks. Acemoglu et al. (2017) pro-
vide necessary and sufficient conditions for idiosyncratic, industry-
specific productivity shocks to engender macroeconomic tail risk
even as the number of industries becomes exceedingly large. In a
model in which industries’ production functions exhibit comple-
mentarities across inputs and decreasing returns to scale, Baqaee
and Farhi (2017) demonstrate that GDP growth can be fat-tailed
even with thin-tailed productivity shocks. Compared to these two
papers, our contribution is to empirically recover the distribution
of fundamental shocks, then establish whether the common com-
ponent of these micro shocks generates aggregate tail risk.

2. Data

Fig. 1 presents the skewness and kurtosis of growth rates of
GDP and of individual sectors’ gross output. These growth rates are
at the quarterly frequency, computed using data from the Federal
Reserve Board (for goods-producing industries) and the Bureau of
Economic Analysis (for all other industries) from 1972 to 2016.2

GDP growth exhibits tail risk: Over the sample period, the
excess kurtosis of GDP growth is 2.34, with a bootstrapped 90%
confidence interval of 0.95 to 3.53.3 GDP growth is also slightly
negatively skewed, but not statistically significantly so. These
statistics are depicted in the first rows of the two panels of Fig. 1.
In the remaining rows, we present the output growth rates of the
39 constituent industries in our data set. Among these industries,
output growth rates are significantly negatively skewed for 16
industries, significantly positively kurtotic for 25 industries, with
many of these industries concentrated within durable goods man-
ufacturing.

Fig. 1 singles out certain industries as potential sources of ag-
gregate tail risk. However, since input–output linkages and general
equilibrium effects may lead shocks in one industry to manifest as
output fluctuations in another,wehave yet to determine the extent
to which individual industries contribute to the GDP tail risk that
we have documented in Fig. 1.We turn to this task in the following
section.

3. Model

The model broadly follows that in Foerster et al. (2011) and
Atalay (2017). The aim of this model is to recover industries’
productivity shocks from data on industry output. The economy
consists of N perfectly competitive industries and a representative
consumer.

The consumer supplies labor (Lt ) and consumes the goods and
services (CtJ ) produced by each industry:

U0 = E0

∞∑
t=0

β t
{
log Ct −

φ

φ + 1
L

φ+1
φ

t

}
,

2 For industries outside the Federal Reserve Board data set, industry output
is measured at the annual frequency. We impute quarterly growth rates at the
industry level to match the industry’s annual output growth and the quarterly
growth rate of non-industrial production.
3 We begin the sample in 1972, coinciding with the date on which the Federal

Reserve Board Industrial Production series begins measuring output of individual
goods-producing industries. Using annual data from 1929 to 2016, the excess
kurtosis of GDP growth equals 3.29, with a 90% confidence interval of (1.51, 5.26)

where Ct =

N∏
J=1

(
CtJ

ξJ

)ξJ

. (1)

In Eq. (1), ξJ represents the importance of the industry J good in
the consumer’s preferences, and φ the labor supply elasticity.

The production function of industry J is given by:

QtJ = AtJ ·

(
KtJ

αJ

)αJ

·

(
LtJ

1 − αJ − µJ

)1−αJ−µJ

·

(
MtJ

µJ

)µJ

, where (2)

MtJ =

[
N∑

I=1

(
Γ M
IJ

) 1
ε
(
Mt,I→J

) ε−1
ε

]ε/(ε−1)

, and (3)

Kt+1,J = (1 − δ) · KtJ +

N∏
I=1

(
Xt,I→J

Γ X
IJ

)Γ X
IJ

. (4)

Output is produced with capital, labor, and intermediate inputs
(with cost shares αJ , 1 − αJ − µJ , and µJ , respectively). Here,
AtJ characterizes industry J ’s exogeneous productivity at time t
(Eq. (2)). The intermediate input bundle is a CES composite ofmate-
rials purchased from other industries (Eq. (3)). Capital is industry-
specific, depreciates at a common rate δ, and is augmented through
investment goods purchased from other industries (Eq. (4)).

Each industry’s output can either be consumed or purchased by
other industries:

QtJ = CtJ +

N∑
I=1

Xt,J→I + Mt,J→I . (5)

Total labor supply equals the sum of all labor demanded by the
N industries:

Lt =

N∑
J=1

LtJ . (6)

Finally, productivity follows a geometric random walk:

logAt = logAt−1 + ωt , (7)

where At ≡ (At1, . . . , AtN)′, and ωt is a zero-mean i.i.d. random
vector.

We focus on a competitive equilibrium of the economy charac-
terized by Eqs. (1) through (7). As shown in Foerster et al. (2011),
in the competitive equilibrium, output growth evolves according
to:

∆ logQt+1 = Π1 · ∆ logQt + Π2 · ωt + Π3 · ωt+1, (8)

up to a first-order approximation.4 In Eq. (8), Qt ≡ (Qt1, . . . ,QtN )′,
and Π1, Π2, and Π3 are matrices whose elements are functions of
the parameters of the model.

We calibrate the model following Atalay (2017): We set φ = 2,
β = 0.99, and δ = 0.025. We compute αJ , ξJ , µJ , Γ M

IJ , and Γ X
IJ

from the 1997 BEA Industry Economic Accounts.5 Finally, we take
a range of values of ε, from 0.1 to 1.0. The lower end of this interval
is taken from Atalay (2017), while the upper end is the calibrated
value in Foerster et al. (2011), among others.

Using our industry-level data from 1972 to 2016, we retrieve
industry×quarter-level productivity shocks, ωtJ , from a Kalman-
filter application of Eq. (8). As an analogue to Fig. 1, Fig. 2 plots the
skewness and kurtosis of theωtJ . For both ε = 0.1 and ε = 1.0, the

4 See Online Appendix F of Atalay (2017) for the derivation of Eq. (8).
5 Proxying forwithin-industry repair andmaintenance expenditures (McGrattan

and Schmitz, 1999), we add 0.35 to the diagonal elements of Γ X .
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Fig. 1. The two panels give the skewness (left panel) and excess kurtosis (right panel) of quarterly output growth, with corresponding 90% confidence intervals (computed
from 1000 bootstrapped samples). A filled in circle indicates that the estimate is statistically different from zero (at 10% significance); an ‘‘x’’ indicates no significance.

Fig. 2. Each panel gives the skewness and excess kurtosis of the ωtJ . The left two panels use ε = 0.1; the right two panels use ε = 1.0.

recovered productivity shocks have positive kurtosis, consistent
with one of the necessary conditions of Acemoglu et al. (2017).
However, the shocks may share a common component and thus
violate the independence assumption in Acemoglu et al. (2017).
We now investigate this possibility.6

6 As Baqaee and Farhi (2017) emphasize, since we approximate our model log-
linearly, it is a priori conceivable that the distribution of filtered productivity shocks
(absent such an approximation) would more closely resemble that of a normal
random variable. However, the calibration in Baqaee and Farhi (2017) also indicates

4. Results and discussion

With the estimates ofωtJ , we perform two exercises to evaluate
the industry-specific contribution of aggregate tail risk.

First, Foerster et al. (2011) and Atalay (2017) compute the
average pairwise correlation of ω to summarize the importance
of the common component of productivity shocks. Building off of

that – for our calibrated value of ε – the first-order approximation is fairly accurate
so long as inputs can be freely re-allocated across sectors, as is the case in our setup.
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Fig. 3. The left panel gives the correlation, co-skewness, and co-kurtosis of ω, with the latter two statistics defined by Eqs. (9) and (11). The right panel gives the share of the
second, third, and fourth moments of GDP growth that are induced by industry-specific shocks.

this idea, we measure the higher-order analogue of the pairwise
correlation: the co-skewness and co-kurtosis. Using µωX and σωX
to denote the mean and standard deviation of productivity shocks
in industry X , we define the co-skewness of productivity shocks in
industries H , I , and J as:

ρ̂3
(
ωH , ωI , ωJ

)
=

ρ3
(
ωH , ωI , ωJ

)
σωH · σωI · σωJ

, where (9)

ρ3
(
ωH , ωI , ωJ

)
= E

[(
ωH − µωH

)
·
(
ωI − µωI

)
·
(
ωJ − µωJ

)]
, (10)

and the co-kurtosis as:

ρ̂4
(
ωL, ωH , ωI , ωJ

)
=

ρ4
(
ωL, ωH , ωI , ωJ

)
σωG · σωH · σωI · σωJ

, where (11)

ρ4
(
ωL, ωH , ωI , ωJ

)
= E

[(
ωG − µωG

)
·
(
ωH − µωH

)
·
(
ωI − µωI

)
·
(
ωJ − µωJ

)]
. (12)

The left panel of Fig. 3 plots the average pairwise correlation, co-
skewness, and co-kurtosis. Consistent with Atalay (2017), produc-
tivity shocks are less correlated with one another when ε is small.
Similarly, the average co-skewness and co-kurtosis are closer to
zero with relatively low values of ε, suggesting a stronger role
for industry-specific shocks for higher-moment GDP fluctuations
under this parameterization.

Our second exercise consists of principal component analysis
and its higher order analogue: moment component analysis (see
Jondeau et al., forthcoming). The principal component analysis
procedure that we perform partitions the productivity shocks’
covariance matrix into two components: a rank-one matrix repre-
senting the contribution of common shocks, and a diagonal matrix
representing the contribution of industry-specific shocks. With
these two covariance matrices in hand, we compute the model-
implied covariancematrices for industries’ value added that results
only from sector-specific shocks or from both sector-specific and
common shocks. We then compute the fraction of aggregate out-
put volatility that is explained by the independent component of
industries’ productivity shocks; see equation 17 of Atalay (2017).

While principal component analysis extracts the first eigenvec-
tor – corresponding to the largest eigenvalue – of the covariance
matrix, moment component analysis extracts the first eigenvector
from the co-skewness and co-kurtosis tensors. To recover the
contribution of industry-specific shocks to aggregate skewness,
we begin by performing the singular value decomposition of the
N × N × N dimensional tensor containing the third-order central
co-moments ρ3

(
ωH , ωI , ωJ

)
. We retrieve the tensors associated

with the common factor and with industry-specific shocks. We
then compute the ratio of the third-moment of GDP growth that
is due to industry-specific shocks only and that which is due to
both industry-specific and common shocks. We perform a corre-
sponding procedure to assess the contribution of industry-specific
shocks to the fourth moment of GDP fluctuations.

The right panel of Fig. 3 contains the result of this exercise.
As with Foerster et al. (2011) and Atalay (2017), industry-specific
shocks account for less thanhalf of aggregate volatilitywhen ε ≈ 1,
and a substantially larger portionwith smaller values of ε. The new
results in this figure relate to the share of the third and fourth
moment of GDP fluctuationswhich are due to sectoral shocks.With
a Cobb–Douglas production function, sectoral shocks account for
approximately 7% of the fourth moment of GDP fluctuations and
essentially none of the third moment of GDP fluctuations. With
lower elasticities of substitution, sectoral shocks are the primary
source of tail risk.

These results extend and reinforce those in Atalay (2017). Us-
ing data on industries’ input choices and input prices, that paper
estimates that industries have limited ability to substitute across
their inputs in the short run. Since complementarity in sectoral
production functions induces co-movement in industries’ output,
that earlier paper indicates that shocks specific to individual in-
dustries are responsible for a large portion of aggregate volatility.
This same logic applieswhen assessing the role of industry-specific
shocks in contributing to higher moments of the distribution of
GDP growth. Complementarity in production leads (exceptionally
large) shocks in individual industries to induce large shifts in the
industries upstream and downstreamof the shocked industry. This
co-movement of exceptionally large output shifts across industries
then manifests as large GDP fluctuations.
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